Cargando…
Probing the Kinetic and Thermodynamic Fingerprints of Anti-EGF Nanobodies by Surface Plasmon Resonance
Despite the widespread use of antibodies in clinical applications, the precise molecular mechanisms underlying antibody–antigen (Ab–Ag) interactions are often poorly understood. In this study, we exploit the technical features of a typical surface plasmon resonance (SPR) biosensor to dissect the kin...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344977/ https://www.ncbi.nlm.nih.gov/pubmed/32604841 http://dx.doi.org/10.3390/ph13060134 |
_version_ | 1783556073012068352 |
---|---|
author | Guardiola, Salvador Varese, Monica Taulés, Marta Díaz-Lobo, Mireia García, Jesús Giralt, Ernest |
author_facet | Guardiola, Salvador Varese, Monica Taulés, Marta Díaz-Lobo, Mireia García, Jesús Giralt, Ernest |
author_sort | Guardiola, Salvador |
collection | PubMed |
description | Despite the widespread use of antibodies in clinical applications, the precise molecular mechanisms underlying antibody–antigen (Ab–Ag) interactions are often poorly understood. In this study, we exploit the technical features of a typical surface plasmon resonance (SPR) biosensor to dissect the kinetic and thermodynamic components that govern the binding of single-domain Ab or nanobodies to their target antigen, epidermal growth factor (EGF), a key oncogenic protein that is involved in tumour progression. By carefully tuning the experimental conditions and transforming the kinetic data into equilibrium constants, we reveal the complete picture of binding thermodynamics, including the energetics of the complex-formation transition state. This approach, performed using an experimentally simple and high-throughput setup, is expected to facilitate mechanistic studies of Ab-based therapies and, importantly, promote the rational development of new biological drugs with suitable properties. |
format | Online Article Text |
id | pubmed-7344977 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73449772020-07-09 Probing the Kinetic and Thermodynamic Fingerprints of Anti-EGF Nanobodies by Surface Plasmon Resonance Guardiola, Salvador Varese, Monica Taulés, Marta Díaz-Lobo, Mireia García, Jesús Giralt, Ernest Pharmaceuticals (Basel) Article Despite the widespread use of antibodies in clinical applications, the precise molecular mechanisms underlying antibody–antigen (Ab–Ag) interactions are often poorly understood. In this study, we exploit the technical features of a typical surface plasmon resonance (SPR) biosensor to dissect the kinetic and thermodynamic components that govern the binding of single-domain Ab or nanobodies to their target antigen, epidermal growth factor (EGF), a key oncogenic protein that is involved in tumour progression. By carefully tuning the experimental conditions and transforming the kinetic data into equilibrium constants, we reveal the complete picture of binding thermodynamics, including the energetics of the complex-formation transition state. This approach, performed using an experimentally simple and high-throughput setup, is expected to facilitate mechanistic studies of Ab-based therapies and, importantly, promote the rational development of new biological drugs with suitable properties. MDPI 2020-06-26 /pmc/articles/PMC7344977/ /pubmed/32604841 http://dx.doi.org/10.3390/ph13060134 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guardiola, Salvador Varese, Monica Taulés, Marta Díaz-Lobo, Mireia García, Jesús Giralt, Ernest Probing the Kinetic and Thermodynamic Fingerprints of Anti-EGF Nanobodies by Surface Plasmon Resonance |
title | Probing the Kinetic and Thermodynamic Fingerprints of Anti-EGF Nanobodies by Surface Plasmon Resonance |
title_full | Probing the Kinetic and Thermodynamic Fingerprints of Anti-EGF Nanobodies by Surface Plasmon Resonance |
title_fullStr | Probing the Kinetic and Thermodynamic Fingerprints of Anti-EGF Nanobodies by Surface Plasmon Resonance |
title_full_unstemmed | Probing the Kinetic and Thermodynamic Fingerprints of Anti-EGF Nanobodies by Surface Plasmon Resonance |
title_short | Probing the Kinetic and Thermodynamic Fingerprints of Anti-EGF Nanobodies by Surface Plasmon Resonance |
title_sort | probing the kinetic and thermodynamic fingerprints of anti-egf nanobodies by surface plasmon resonance |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344977/ https://www.ncbi.nlm.nih.gov/pubmed/32604841 http://dx.doi.org/10.3390/ph13060134 |
work_keys_str_mv | AT guardiolasalvador probingthekineticandthermodynamicfingerprintsofantiegfnanobodiesbysurfaceplasmonresonance AT varesemonica probingthekineticandthermodynamicfingerprintsofantiegfnanobodiesbysurfaceplasmonresonance AT taulesmarta probingthekineticandthermodynamicfingerprintsofantiegfnanobodiesbysurfaceplasmonresonance AT diazlobomireia probingthekineticandthermodynamicfingerprintsofantiegfnanobodiesbysurfaceplasmonresonance AT garciajesus probingthekineticandthermodynamicfingerprintsofantiegfnanobodiesbysurfaceplasmonresonance AT giralternest probingthekineticandthermodynamicfingerprintsofantiegfnanobodiesbysurfaceplasmonresonance |