Cargando…
Investigation of Thermal Transport in Multi-Shaped Cu Nanomaterial-Based Nanofluids
The unsteady flow of H(2)O saturated by tiny nanosized particles with various shapes (platelets, blades, cylinders, and bricks) over a thin slit is reported. For this novel analysis, the influences of the magnetic field and heat generation/absorption are incorporated into the governing model. The di...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345020/ https://www.ncbi.nlm.nih.gov/pubmed/32560292 http://dx.doi.org/10.3390/ma13122737 |
_version_ | 1783556083398213632 |
---|---|
author | Adnan, Ali Zaidi, Syed Zulfiqar Khan, Umar Abdeljawad, Thabet Ahmed, Naveed Mohyud-Din, Syed Tauseef Khan, Ilyas Nisar, Kottakkaran Sooppy |
author_facet | Adnan, Ali Zaidi, Syed Zulfiqar Khan, Umar Abdeljawad, Thabet Ahmed, Naveed Mohyud-Din, Syed Tauseef Khan, Ilyas Nisar, Kottakkaran Sooppy |
author_sort | Adnan, |
collection | PubMed |
description | The unsteady flow of H(2)O saturated by tiny nanosized particles with various shapes (platelets, blades, cylinders, and bricks) over a thin slit is reported. For this novel analysis, the influences of the magnetic field and heat generation/absorption are incorporated into the governing model. The dimensionless nanofluid model is attained after the successful implementation of similarity transformations. Then, Runge-Kutta and homotopy analysis algorithms are implemented for mathematical analysis, and the results are obtained by varying the main flow parameters. A decrease in nanofluid motion is observed for a stronger magnetic field (M). Additionally, nanofluid temperature β(η) increases for higher values of M. Decreasing trends in the shear stresses Re(x)(0.5)C(Fx) are observed for the unsteadiness parameter S, and this declines with stronger M. Similarly, the local heat transfer rate Re(x)(−0.5)N(ux) rises with the unsteady behavior of the fluid. It is observed that the nanofluid motion drops for variable thickness ([Formula: see text]) of the slit, whereas the motion becomes slower with stronger magnetic field effects (M). |
format | Online Article Text |
id | pubmed-7345020 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73450202020-07-09 Investigation of Thermal Transport in Multi-Shaped Cu Nanomaterial-Based Nanofluids Adnan, Ali Zaidi, Syed Zulfiqar Khan, Umar Abdeljawad, Thabet Ahmed, Naveed Mohyud-Din, Syed Tauseef Khan, Ilyas Nisar, Kottakkaran Sooppy Materials (Basel) Article The unsteady flow of H(2)O saturated by tiny nanosized particles with various shapes (platelets, blades, cylinders, and bricks) over a thin slit is reported. For this novel analysis, the influences of the magnetic field and heat generation/absorption are incorporated into the governing model. The dimensionless nanofluid model is attained after the successful implementation of similarity transformations. Then, Runge-Kutta and homotopy analysis algorithms are implemented for mathematical analysis, and the results are obtained by varying the main flow parameters. A decrease in nanofluid motion is observed for a stronger magnetic field (M). Additionally, nanofluid temperature β(η) increases for higher values of M. Decreasing trends in the shear stresses Re(x)(0.5)C(Fx) are observed for the unsteadiness parameter S, and this declines with stronger M. Similarly, the local heat transfer rate Re(x)(−0.5)N(ux) rises with the unsteady behavior of the fluid. It is observed that the nanofluid motion drops for variable thickness ([Formula: see text]) of the slit, whereas the motion becomes slower with stronger magnetic field effects (M). MDPI 2020-06-17 /pmc/articles/PMC7345020/ /pubmed/32560292 http://dx.doi.org/10.3390/ma13122737 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Adnan, Ali Zaidi, Syed Zulfiqar Khan, Umar Abdeljawad, Thabet Ahmed, Naveed Mohyud-Din, Syed Tauseef Khan, Ilyas Nisar, Kottakkaran Sooppy Investigation of Thermal Transport in Multi-Shaped Cu Nanomaterial-Based Nanofluids |
title | Investigation of Thermal Transport in Multi-Shaped Cu Nanomaterial-Based Nanofluids |
title_full | Investigation of Thermal Transport in Multi-Shaped Cu Nanomaterial-Based Nanofluids |
title_fullStr | Investigation of Thermal Transport in Multi-Shaped Cu Nanomaterial-Based Nanofluids |
title_full_unstemmed | Investigation of Thermal Transport in Multi-Shaped Cu Nanomaterial-Based Nanofluids |
title_short | Investigation of Thermal Transport in Multi-Shaped Cu Nanomaterial-Based Nanofluids |
title_sort | investigation of thermal transport in multi-shaped cu nanomaterial-based nanofluids |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345020/ https://www.ncbi.nlm.nih.gov/pubmed/32560292 http://dx.doi.org/10.3390/ma13122737 |
work_keys_str_mv | AT adnan investigationofthermaltransportinmultishapedcunanomaterialbasednanofluids AT alizaidisyedzulfiqar investigationofthermaltransportinmultishapedcunanomaterialbasednanofluids AT khanumar investigationofthermaltransportinmultishapedcunanomaterialbasednanofluids AT abdeljawadthabet investigationofthermaltransportinmultishapedcunanomaterialbasednanofluids AT ahmednaveed investigationofthermaltransportinmultishapedcunanomaterialbasednanofluids AT mohyuddinsyedtauseef investigationofthermaltransportinmultishapedcunanomaterialbasednanofluids AT khanilyas investigationofthermaltransportinmultishapedcunanomaterialbasednanofluids AT nisarkottakkaransooppy investigationofthermaltransportinmultishapedcunanomaterialbasednanofluids |