Cargando…
Imaging-Based Prediction of Molecular Therapy Targets in NSCLC by Radiogenomics and AI Approaches: A Systematic Review
The objective of this systematic review was to analyze the current state of the art of imaging-derived biomarkers predictive of genetic alterations and immunotherapy targets in lung cancer. We included original research studies reporting the development and validation of imaging feature-based models...
Autores principales: | Ninatti, Gaia, Kirienko, Margarita, Neri, Emanuele, Sollini, Martina, Chiti, Arturo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345054/ https://www.ncbi.nlm.nih.gov/pubmed/32486314 http://dx.doi.org/10.3390/diagnostics10060359 |
Ejemplares similares
-
Distributed learning: a reliable privacy-preserving strategy to change multicenter collaborations using AI
por: Kirienko, Margarita, et al.
Publicado: (2021) -
The Role of PET Imaging in the Differential Diagnosis between Radiation Necrosis and Recurrent Disease in Irradiated Adult-Type Diffuse Gliomas: A Systematic Review
por: Ninatti, Gaia, et al.
Publicado: (2023) -
Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics
por: Sollini, Martina, et al.
Publicado: (2019) -
COVID-19 vaccination, implications for PET/CT image interpretation and future perspectives
por: Kirienko, Margarita, et al.
Publicado: (2022) -
Image Embeddings Extracted from CNNs Outperform Other Transfer Learning Approaches in Classification of Chest Radiographs
por: Gozzi, Noemi, et al.
Publicado: (2022)