Cargando…
Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China)
To compare the random forest (RF) model and the frequency ratio (FR) model for landslide susceptibility mapping (LSM), this research selected Yunyang Country as the study area for its frequent natural disasters; especially landslides. A landslide inventory was built by historical records; satellite...
Autores principales: | Wang, Yue, Sun, Deliang, Wen, Haijia, Zhang, Hong, Zhang, Fengtai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345078/ https://www.ncbi.nlm.nih.gov/pubmed/32545618 http://dx.doi.org/10.3390/ijerph17124206 |
Ejemplares similares
-
Study on landslide susceptibility mapping with different factor screening methods and random forest models
por: Gu, Tengfei, et al.
Publicado: (2023) -
Landslide Susceptibility Evaluation of Machine Learning Based on Information Volume and Frequency Ratio: A Case Study of Weixin County, China
por: He, Wancai, et al.
Publicado: (2023) -
Application of Transformer Models to Landslide Susceptibility Mapping
por: Bao, Shuai, et al.
Publicado: (2022) -
Resilience in rural left-behind middle school students in Yunyang county of the Three Gorges area in China: a prospective cohort study
por: Luo, Yan, et al.
Publicado: (2016) -
Novel Entropy and Rotation Forest-Based Credal Decision Tree Classifier for Landslide Susceptibility Modeling
por: He, Qingfeng, et al.
Publicado: (2019)