Cargando…

Ultrasonic Liquid Penetration Measurement in Thin Sheets—Physical Mechanisms and Interpretation

Ultrasonic liquid penetration (ULP) measurements of porous sheets have been applied for a variety of purposes ranging from determining liquid absorption dynamics to surface characterization of substrates. Interpretation of ULP results, however, is complex as the ultrasound signal can be affected by...

Descripción completa

Detalles Bibliográficos
Autores principales: Waldner, Carina, Hirn, Ulrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345137/
https://www.ncbi.nlm.nih.gov/pubmed/32560465
http://dx.doi.org/10.3390/ma13122754
Descripción
Sumario:Ultrasonic liquid penetration (ULP) measurements of porous sheets have been applied for a variety of purposes ranging from determining liquid absorption dynamics to surface characterization of substrates. Interpretation of ULP results, however, is complex as the ultrasound signal can be affected by several mechanisms: (1) air being replaced by the liquid in the substrate pores, (2) air bubbles forming during penetration, and (3) structural changes of the substrate due to swelling of the substrate material. Analyzing tailored liquids and substrates in combination with contact angle measurements we are demonstrating that the characteristic shape of the ULP measurement curves can be interpreted in terms of the regime of liquid uptake. A fast and direct decline of the curve corresponds to capillary penetration, the slope of the curve indicates the penetration speed. A slow decline after a previous maximum in the signal can be related to diffusive liquid transport and swelling of the substrate material.