Cargando…
Bioactive Molecular Networking for Mapping the Antimicrobial Constituents of the Baltic Brown Alga Fucus vesiculosus
The brown alga Fucus vesiculosus is common to the intertidal zones of the Baltic Sea, where it is exposed to high fouling pressures by microorganisms. Our previous studies showed, repeatedly, the consistent antimicrobial activity of F. vesiculosus crude extracts against human pathogens, while untarg...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345172/ https://www.ncbi.nlm.nih.gov/pubmed/32545808 http://dx.doi.org/10.3390/md18060311 |
_version_ | 1783556118756196352 |
---|---|
author | Buedenbender, Larissa Astone, Francesca Anna Tasdemir, Deniz |
author_facet | Buedenbender, Larissa Astone, Francesca Anna Tasdemir, Deniz |
author_sort | Buedenbender, Larissa |
collection | PubMed |
description | The brown alga Fucus vesiculosus is common to the intertidal zones of the Baltic Sea, where it is exposed to high fouling pressures by microorganisms. Our previous studies showed, repeatedly, the consistent antimicrobial activity of F. vesiculosus crude extracts against human pathogens, while untargeted metabolomics analyses have revealed a variety of metabolites. In this study, we applied the UPLC-QToF-MS/MS-based “bioactive molecular networking” (BMN) concept on the most bioactive n-hexane and n-butanol subextracts of Baltic F. vesiculosus coupled with in silico dereplication tools to identify the compounds responsible for antimicrobial activity. The first antimicrobial cluster identified by BMN was galactolipids. Our targeted isolation efforts for this class led to the isolation of six monogalactosyldiacylglycerol (MGDG) derivatives (1–6) and one digalactosyldiacylglycerol (DGDG, 7). The MGDGs 5 and 6 and the DGDG 7 exhibited activity against Staphylococcus aureus. The second compound class with high bioactivity was phlorotannins. In particular, phlorethol-type phlorotannins showed high correlations with antimicrobial activity based on the BMN approach, and two phlorotannins (8–9) were isolated. This study shows that antimicrobial components of F. vesiculosus reside in the algal cell walls and membranes and that BMN provides a complementary tool for the targeted isolation of bioactive metabolites. |
format | Online Article Text |
id | pubmed-7345172 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73451722020-07-09 Bioactive Molecular Networking for Mapping the Antimicrobial Constituents of the Baltic Brown Alga Fucus vesiculosus Buedenbender, Larissa Astone, Francesca Anna Tasdemir, Deniz Mar Drugs Article The brown alga Fucus vesiculosus is common to the intertidal zones of the Baltic Sea, where it is exposed to high fouling pressures by microorganisms. Our previous studies showed, repeatedly, the consistent antimicrobial activity of F. vesiculosus crude extracts against human pathogens, while untargeted metabolomics analyses have revealed a variety of metabolites. In this study, we applied the UPLC-QToF-MS/MS-based “bioactive molecular networking” (BMN) concept on the most bioactive n-hexane and n-butanol subextracts of Baltic F. vesiculosus coupled with in silico dereplication tools to identify the compounds responsible for antimicrobial activity. The first antimicrobial cluster identified by BMN was galactolipids. Our targeted isolation efforts for this class led to the isolation of six monogalactosyldiacylglycerol (MGDG) derivatives (1–6) and one digalactosyldiacylglycerol (DGDG, 7). The MGDGs 5 and 6 and the DGDG 7 exhibited activity against Staphylococcus aureus. The second compound class with high bioactivity was phlorotannins. In particular, phlorethol-type phlorotannins showed high correlations with antimicrobial activity based on the BMN approach, and two phlorotannins (8–9) were isolated. This study shows that antimicrobial components of F. vesiculosus reside in the algal cell walls and membranes and that BMN provides a complementary tool for the targeted isolation of bioactive metabolites. MDPI 2020-06-13 /pmc/articles/PMC7345172/ /pubmed/32545808 http://dx.doi.org/10.3390/md18060311 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Buedenbender, Larissa Astone, Francesca Anna Tasdemir, Deniz Bioactive Molecular Networking for Mapping the Antimicrobial Constituents of the Baltic Brown Alga Fucus vesiculosus |
title | Bioactive Molecular Networking for Mapping the Antimicrobial Constituents of the Baltic Brown Alga Fucus vesiculosus |
title_full | Bioactive Molecular Networking for Mapping the Antimicrobial Constituents of the Baltic Brown Alga Fucus vesiculosus |
title_fullStr | Bioactive Molecular Networking for Mapping the Antimicrobial Constituents of the Baltic Brown Alga Fucus vesiculosus |
title_full_unstemmed | Bioactive Molecular Networking for Mapping the Antimicrobial Constituents of the Baltic Brown Alga Fucus vesiculosus |
title_short | Bioactive Molecular Networking for Mapping the Antimicrobial Constituents of the Baltic Brown Alga Fucus vesiculosus |
title_sort | bioactive molecular networking for mapping the antimicrobial constituents of the baltic brown alga fucus vesiculosus |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345172/ https://www.ncbi.nlm.nih.gov/pubmed/32545808 http://dx.doi.org/10.3390/md18060311 |
work_keys_str_mv | AT buedenbenderlarissa bioactivemolecularnetworkingformappingtheantimicrobialconstituentsofthebalticbrownalgafucusvesiculosus AT astonefrancescaanna bioactivemolecularnetworkingformappingtheantimicrobialconstituentsofthebalticbrownalgafucusvesiculosus AT tasdemirdeniz bioactivemolecularnetworkingformappingtheantimicrobialconstituentsofthebalticbrownalgafucusvesiculosus |