Cargando…

Novel Polymeric Micelles-Coated Magnetic Nanoparticles for In Vivo Bioimaging of Liver: Toxicological Profile and Contrast Enhancement

Magnetic nanoparticles are intensively studied for magnetic resonance imaging (MRI) as contrast agents but yet there remained some gaps regarding their toxicity potential and clinical implications of their biodistribution in organs. This study presents the effects induced by magnetite nanoparticles...

Descripción completa

Detalles Bibliográficos
Autores principales: Popescu Din, Ioana Mihaela, Balas, Mihaela, Hermenean, Anca, Vander Elst, Luce, Laurent, Sophie, Burtea, Carmen, Cinteza, Ludmila Otilia, Dinischiotu, Anca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345181/
https://www.ncbi.nlm.nih.gov/pubmed/32549296
http://dx.doi.org/10.3390/ma13122722
Descripción
Sumario:Magnetic nanoparticles are intensively studied for magnetic resonance imaging (MRI) as contrast agents but yet there remained some gaps regarding their toxicity potential and clinical implications of their biodistribution in organs. This study presents the effects induced by magnetite nanoparticles encapsulated in polymeric micelles (MNP-DSPE-PEG) on biochemical markers, metabolic functions, and MRI signal in CD1 mice liver. Three groups of animals, one control and the other ones injected with a suspension of five, respectively, 15 mg Fe/kg bw nanoparticles, were monitored up to 14 days. The results indicated the presence of MNP-DSPE-PEG in the liver in the first two days of the experiment. The most significant biochemical changes also occurred in the first 3 days after exposure when the most severe histological changes were observed. The change of the MRI signal intensity on the T2-weighted images and increased transverse relaxation rates R(2) in the liver were observed after the first minutes from the nanoparticle administration. The study shows that the alterations of biomarkers level resulting from exposure to MNP-DSPE-PEG are restored in time in mice liver. This was associated with a significant contrast on T2-weighted images and made us conclude that these nanoparticles might be potential candidates for use as a contrast agent in liver medical imaging.