Cargando…
A Brief Theory of Epidemic Kinetics
In the context of the COVID-19 epidemic, and on the basis of the Theory of Dynamical Systems, we propose a simple theoretical approach for the expansion of contagious diseases, with a particular focus on viral respiratory tracts. The infection develops through contacts between contagious and exposed...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345267/ https://www.ncbi.nlm.nih.gov/pubmed/32580293 http://dx.doi.org/10.3390/biology9060134 |
_version_ | 1783556141218791424 |
---|---|
author | Louchet, François |
author_facet | Louchet, François |
author_sort | Louchet, François |
collection | PubMed |
description | In the context of the COVID-19 epidemic, and on the basis of the Theory of Dynamical Systems, we propose a simple theoretical approach for the expansion of contagious diseases, with a particular focus on viral respiratory tracts. The infection develops through contacts between contagious and exposed people, with a rate proportional to the number of contagious and of non-immune individuals, to contact duration and turnover, inversely proportional to the efficiency of protection measures, and balanced by the average individual recovery response. The obvious initial exponential increase is readily hindered by the growing recovery rate, and also by the size reduction of the exposed population. The system converges towards a stable attractor whose value is expressed in terms of the “reproductive rate” R(0), depending on contamination and recovery factors. Various properties of the attractor are examined, and particularly its relations with R(0). Decreasing this ratio below a critical value leads to a tipping threshold beyond which the epidemic is over. By contrast, significant values of the above ratio may bring the system through a bifurcating hierarchy of stable cycles up to a chaotic behaviour. |
format | Online Article Text |
id | pubmed-7345267 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73452672020-07-09 A Brief Theory of Epidemic Kinetics Louchet, François Biology (Basel) Article In the context of the COVID-19 epidemic, and on the basis of the Theory of Dynamical Systems, we propose a simple theoretical approach for the expansion of contagious diseases, with a particular focus on viral respiratory tracts. The infection develops through contacts between contagious and exposed people, with a rate proportional to the number of contagious and of non-immune individuals, to contact duration and turnover, inversely proportional to the efficiency of protection measures, and balanced by the average individual recovery response. The obvious initial exponential increase is readily hindered by the growing recovery rate, and also by the size reduction of the exposed population. The system converges towards a stable attractor whose value is expressed in terms of the “reproductive rate” R(0), depending on contamination and recovery factors. Various properties of the attractor are examined, and particularly its relations with R(0). Decreasing this ratio below a critical value leads to a tipping threshold beyond which the epidemic is over. By contrast, significant values of the above ratio may bring the system through a bifurcating hierarchy of stable cycles up to a chaotic behaviour. MDPI 2020-06-22 /pmc/articles/PMC7345267/ /pubmed/32580293 http://dx.doi.org/10.3390/biology9060134 Text en © 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Louchet, François A Brief Theory of Epidemic Kinetics |
title | A Brief Theory of Epidemic Kinetics |
title_full | A Brief Theory of Epidemic Kinetics |
title_fullStr | A Brief Theory of Epidemic Kinetics |
title_full_unstemmed | A Brief Theory of Epidemic Kinetics |
title_short | A Brief Theory of Epidemic Kinetics |
title_sort | brief theory of epidemic kinetics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345267/ https://www.ncbi.nlm.nih.gov/pubmed/32580293 http://dx.doi.org/10.3390/biology9060134 |
work_keys_str_mv | AT louchetfrancois abrieftheoryofepidemickinetics AT louchetfrancois brieftheoryofepidemickinetics |