Cargando…
Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries
Discussions about the recently identified deadly coronavirus disease (COVID-19) which originated in Wuhan, China in December 2019 are common around the globe now. This is an infectious and even life-threatening disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It ha...
Autores principales: | Singh, Sarbjit, Parmar, Kulwinder Singh, Makkhan, Sidhu Jitendra Singh, Kaur, Jatinder, Peshoria, Shruti, Kumar, Jatinder |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345281/ https://www.ncbi.nlm.nih.gov/pubmed/32834622 http://dx.doi.org/10.1016/j.chaos.2020.110086 |
Ejemplares similares
-
Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19
por: Singh, Sarbjit, et al.
Publicado: (2020) -
Prediction of COVID-19 pervasiveness in six major affected states of India and two-stage variation with temperature
por: Singh, Sarbjit, et al.
Publicado: (2021) -
Autoregressive models in environmental forecasting time series: a theoretical and application review
por: Kaur, Jatinder, et al.
Publicado: (2023) -
Global-local least-squares support vector machine (GLocal-LS-SVM)
por: Youssef Ali Amer, Ahmed
Publicado: (2023) -
Fast Algorithms for Structured Least Squares and Total Least Squares Problems
por: Kalsi, Anoop, et al.
Publicado: (2006)