Cargando…

The Roles of an Aluminum Underlayer in the Biocompatibility and Mechanical Integrity of Vertically Aligned Carbon Nanotubes for Interfacing with Retinal Neurons

Retinal implant devices are becoming an increasingly realizable way to improve the vision of patients blinded by photoreceptor degeneration. As an electrode material that can improve restored visual acuity, carbon nanotubes (CNTs) excel due to their nanoscale topography, flexibility, surface chemist...

Descripción completa

Detalles Bibliográficos
Autores principales: Watterson, William J., Moslehi, Saba, Rowland, Conor, Zappitelli, Kara M., Smith, Julian H., Miller, David, Chouinard, Julie E., Golledge, Stephen L., Taylor, Richard P., Perez, Maria-Thereza, Alemán, Benjamín J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345717/
https://www.ncbi.nlm.nih.gov/pubmed/32481670
http://dx.doi.org/10.3390/mi11060546
_version_ 1783556248894963712
author Watterson, William J.
Moslehi, Saba
Rowland, Conor
Zappitelli, Kara M.
Smith, Julian H.
Miller, David
Chouinard, Julie E.
Golledge, Stephen L.
Taylor, Richard P.
Perez, Maria-Thereza
Alemán, Benjamín J.
author_facet Watterson, William J.
Moslehi, Saba
Rowland, Conor
Zappitelli, Kara M.
Smith, Julian H.
Miller, David
Chouinard, Julie E.
Golledge, Stephen L.
Taylor, Richard P.
Perez, Maria-Thereza
Alemán, Benjamín J.
author_sort Watterson, William J.
collection PubMed
description Retinal implant devices are becoming an increasingly realizable way to improve the vision of patients blinded by photoreceptor degeneration. As an electrode material that can improve restored visual acuity, carbon nanotubes (CNTs) excel due to their nanoscale topography, flexibility, surface chemistry, and double-layer capacitance. If vertically aligned carbon nanotubes (VACNTs) are biocompatible with retinal neurons and mechanically robust, they can further improve visual acuity—most notably in subretinal implants—because they can be patterned into high-aspect-ratio, micrometer-size electrodes. We investigated the role of an aluminum (Al) underlayer beneath an iron (Fe) catalyst layer used in the growth of VACNTs by chemical vapor deposition (CVD). In particular, we cultured dissociated retinal cells for three days in vitro (DIV) on unfunctionalized and oxygen plasma functionalized VACNTs grown from a Fe catalyst (Fe and Fe+Pl preparations, where Pl signifies the plasma functionalization) and an Fe catalyst with an Al underlayer (Al/Fe and Al/Fe+Pl preparations). The addition of the Al layer increased the mechanical integrity of the VACNT interface and enhanced retinal neurite outgrowth over the Fe preparation. Unexpectedly, the extent of neurite outgrowth was significantly greater in the Al/Fe than in the Al/Fe+Pl preparation, suggesting plasma functionalization can negatively impact biocompatibility for some VACNT preparations. Additionally, we show our VACNT growth process for the Al/Fe preparation can support neurite outgrowth for up to 7 DIV. By demonstrating the retinal neuron biocompatibility, mechanical integrity, and pattern control of our VACNTs, this work offers VACNT electrodes as a solution for improving the restored visual acuity provided by modern retinal implants.
format Online
Article
Text
id pubmed-7345717
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-73457172020-07-09 The Roles of an Aluminum Underlayer in the Biocompatibility and Mechanical Integrity of Vertically Aligned Carbon Nanotubes for Interfacing with Retinal Neurons Watterson, William J. Moslehi, Saba Rowland, Conor Zappitelli, Kara M. Smith, Julian H. Miller, David Chouinard, Julie E. Golledge, Stephen L. Taylor, Richard P. Perez, Maria-Thereza Alemán, Benjamín J. Micromachines (Basel) Article Retinal implant devices are becoming an increasingly realizable way to improve the vision of patients blinded by photoreceptor degeneration. As an electrode material that can improve restored visual acuity, carbon nanotubes (CNTs) excel due to their nanoscale topography, flexibility, surface chemistry, and double-layer capacitance. If vertically aligned carbon nanotubes (VACNTs) are biocompatible with retinal neurons and mechanically robust, they can further improve visual acuity—most notably in subretinal implants—because they can be patterned into high-aspect-ratio, micrometer-size electrodes. We investigated the role of an aluminum (Al) underlayer beneath an iron (Fe) catalyst layer used in the growth of VACNTs by chemical vapor deposition (CVD). In particular, we cultured dissociated retinal cells for three days in vitro (DIV) on unfunctionalized and oxygen plasma functionalized VACNTs grown from a Fe catalyst (Fe and Fe+Pl preparations, where Pl signifies the plasma functionalization) and an Fe catalyst with an Al underlayer (Al/Fe and Al/Fe+Pl preparations). The addition of the Al layer increased the mechanical integrity of the VACNT interface and enhanced retinal neurite outgrowth over the Fe preparation. Unexpectedly, the extent of neurite outgrowth was significantly greater in the Al/Fe than in the Al/Fe+Pl preparation, suggesting plasma functionalization can negatively impact biocompatibility for some VACNT preparations. Additionally, we show our VACNT growth process for the Al/Fe preparation can support neurite outgrowth for up to 7 DIV. By demonstrating the retinal neuron biocompatibility, mechanical integrity, and pattern control of our VACNTs, this work offers VACNT electrodes as a solution for improving the restored visual acuity provided by modern retinal implants. MDPI 2020-05-28 /pmc/articles/PMC7345717/ /pubmed/32481670 http://dx.doi.org/10.3390/mi11060546 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Watterson, William J.
Moslehi, Saba
Rowland, Conor
Zappitelli, Kara M.
Smith, Julian H.
Miller, David
Chouinard, Julie E.
Golledge, Stephen L.
Taylor, Richard P.
Perez, Maria-Thereza
Alemán, Benjamín J.
The Roles of an Aluminum Underlayer in the Biocompatibility and Mechanical Integrity of Vertically Aligned Carbon Nanotubes for Interfacing with Retinal Neurons
title The Roles of an Aluminum Underlayer in the Biocompatibility and Mechanical Integrity of Vertically Aligned Carbon Nanotubes for Interfacing with Retinal Neurons
title_full The Roles of an Aluminum Underlayer in the Biocompatibility and Mechanical Integrity of Vertically Aligned Carbon Nanotubes for Interfacing with Retinal Neurons
title_fullStr The Roles of an Aluminum Underlayer in the Biocompatibility and Mechanical Integrity of Vertically Aligned Carbon Nanotubes for Interfacing with Retinal Neurons
title_full_unstemmed The Roles of an Aluminum Underlayer in the Biocompatibility and Mechanical Integrity of Vertically Aligned Carbon Nanotubes for Interfacing with Retinal Neurons
title_short The Roles of an Aluminum Underlayer in the Biocompatibility and Mechanical Integrity of Vertically Aligned Carbon Nanotubes for Interfacing with Retinal Neurons
title_sort roles of an aluminum underlayer in the biocompatibility and mechanical integrity of vertically aligned carbon nanotubes for interfacing with retinal neurons
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345717/
https://www.ncbi.nlm.nih.gov/pubmed/32481670
http://dx.doi.org/10.3390/mi11060546
work_keys_str_mv AT wattersonwilliamj therolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT moslehisaba therolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT rowlandconor therolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT zappitellikaram therolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT smithjulianh therolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT millerdavid therolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT chouinardjuliee therolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT golledgestephenl therolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT taylorrichardp therolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT perezmariathereza therolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT alemanbenjaminj therolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT wattersonwilliamj rolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT moslehisaba rolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT rowlandconor rolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT zappitellikaram rolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT smithjulianh rolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT millerdavid rolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT chouinardjuliee rolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT golledgestephenl rolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT taylorrichardp rolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT perezmariathereza rolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons
AT alemanbenjaminj rolesofanaluminumunderlayerinthebiocompatibilityandmechanicalintegrityofverticallyalignedcarbonnanotubesforinterfacingwithretinalneurons