Cargando…
Weakly Labeled Data Augmentation for Deep Learning: A Study on COVID-19 Detection in Chest X-Rays
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic resulting in over 2.7 million infected individuals and over 190,000 deaths and growing. Assertions in the literature suggest that respiratory disorders due to COVID-19 commonly present with pneumonia-like sy...
Autores principales: | Rajaraman, Sivaramakrishnan, Antani, Sameer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345787/ https://www.ncbi.nlm.nih.gov/pubmed/32486140 http://dx.doi.org/10.3390/diagnostics10060358 |
Ejemplares similares
-
Training deep learning algorithms with weakly labeled pneumonia chest X-ray data for COVID-19 detection
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2020) -
A Deep Modality-Specific Ensemble for Improving Pneumonia Detection in Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Advances in Deep Learning for Tuberculosis Screening using Chest X-rays: The Last 5 Years Review
por: Santosh, KC, et al.
Publicado: (2022) -
Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2023) -
Improved Semantic Segmentation of Tuberculosis—Consistent Findings in Chest X-rays Using Augmented Training of Modality-Specific U-Net Models with Weak Localizations
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2021)