Cargando…
The Impact of Surface Preparation for Self-Compacting, High-Performance, Fiber-Reinforced Concrete Confined with CFRP Using a Cement Matrix
With the development of concrete technology, the tendency to combine different materials with each other to achieve a greater efficiency and durability of structures can be observed. In the modern construction industry, various materials and techniques are increasingly being combined in order to ach...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345943/ https://www.ncbi.nlm.nih.gov/pubmed/32599743 http://dx.doi.org/10.3390/ma13122830 |
Sumario: | With the development of concrete technology, the tendency to combine different materials with each other to achieve a greater efficiency and durability of structures can be observed. In the modern construction industry, various materials and techniques are increasingly being combined in order to achieve e.g., an increased resistance to dynamic impacts of a structure, or an increased scope of work of a selected constructional element, which translates into a significant increase in the energy of destruction. Thus, hybrid elements, known as composite ones, are created, which consist of concrete and reinforcements. This study examined the influence of the preparation of the concrete surface on the behavior of high-performance, self-compacting, fiber-reinforced concrete (HPSCFRC), reinforced with carbon fibers (CF) using a cement matrix. In the general lamination processes, this is preformed using epoxy resin. However, epoxy resin is sensitive to relatively low temperatures, and therefore the authors attempted to use a cement matrix in the lamination process. When connecting hardened concrete with a fresh concrete matrix or mixture, the type of the concrete surface is significant. In this research, three types of concrete surfaces e.g., unprepared, sanded and grinded were considered. All of the surfaces were examined using a 3D laser scanner, to determine the Abbott-Firestone profile material share curve. In this research, cylindrical concrete specimens were reinforced with one, two and three layers of laminates. They were then subjected to a uniaxial compressive test. The results of tests showed that the use of cement matrix in the lamination process, due to its low efficiency, should not be applied when reinforcing concrete elements with a high compressive strength. Moreover, the grinded surface of concrete showed the best cooperation with CF reinforcement. |
---|