Cargando…

Systematic Identification of lncRNA-Associated ceRNA Networks in Immune Thrombocytopenia

Primary immune thrombocytopenia (ITP) is an autoimmune disease. However, the molecular mechanisms underlying ITP remained to be further investigated. In the present study, we analyzed a series of public datasets (including GSE43177 and GSE43178) and identified 468 upregulated mRNAs, 272 downregulate...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Zhenwei, Wang, Xuan, Li, Peng, Mei, Chunli, Zhang, Min, Zhao, Chunshan, Song, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345964/
https://www.ncbi.nlm.nih.gov/pubmed/32670393
http://dx.doi.org/10.1155/2020/6193593
Descripción
Sumario:Primary immune thrombocytopenia (ITP) is an autoimmune disease. However, the molecular mechanisms underlying ITP remained to be further investigated. In the present study, we analyzed a series of public datasets (including GSE43177 and GSE43178) and identified 468 upregulated mRNAs, 272 downregulated mRNAs, 134 upregulated lncRNAs, 23 downregulated lncRNAs, 29 upregulated miRNAs, and 39 downregulated miRNAs in ITP patients. Then, we constructed protein-protein interaction networks, miRNA-mRNA and lncRNA coexpression networks in ITP. Bioinformatics analysis showed these genes regulated multiple biological processes in ITP, such as mRNA nonsense-mediated decay, translation, cell-cell adhesion, proteasome-mediated ubiquitin, and mRNA splicing. We thought the present study could broaden our insights into the mechanism underlying the progression of ITP and provide a potential biomarker for the prognosis of ITP.