Cargando…
Non-esterified Fatty Acid-Induced Reactive Oxygen Species Mediated Granulosa Cells Apoptosis Is Regulated by Nrf2/p53 Signaling Pathway
Negative energy balance (NEB) during the perinatal period can affect dairy cow follicular development and reduce the fecundity. Non-esterified fatty acid (NEFA) concentration is elevated during NEB, and is known to be toxic for multiple cell types. In the ovary, NEB increased NEFA, and may influence...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346109/ https://www.ncbi.nlm.nih.gov/pubmed/32545880 http://dx.doi.org/10.3390/antiox9060523 |
_version_ | 1783556335626878976 |
---|---|
author | Wang, Yiru Li, Chengmin Li, Julang Wang, Genlin Li, Lian |
author_facet | Wang, Yiru Li, Chengmin Li, Julang Wang, Genlin Li, Lian |
author_sort | Wang, Yiru |
collection | PubMed |
description | Negative energy balance (NEB) during the perinatal period can affect dairy cow follicular development and reduce the fecundity. Non-esterified fatty acid (NEFA) concentration is elevated during NEB, and is known to be toxic for multiple cell types. In the ovary, NEB increased NEFA, and may influences follicular growth and development. However, the effect and mechanism of NEFA on granulosa cells (GCs) in vitro remains unknown. In this study, we found that NEFA dose-dependently induced apoptosis in primary cultured granulosa cells. Mechanistically, our data showed that NEFA significantly increased reactive oxygen species (ROS) levels, resulting in the activation of endoplasmic reticulum stress (ERS) and eventually cell apoptosis in GCs. Moreover, NEFA also increased the phosphorylation levels of ERK1/2 and p38MAPK pathways, upregulated the expression of p53 and potentially promoted its translocation to the nuclear, thus transcriptionally activated Bax, a downstream gene of this pathway. NEFA also promoted nuclear factor E2 (Nrf2) expression and its level in the nuclear. To elucidate the mechanism of NEFA action, N-acetyl-l-cysteine (NAC), a ROS scavenger was used to verify the role of ROS in NEFA induced apoptosis of GCs. NAC pretreatment reversed the NEFA-induced ERS-related protein and apoptosis-related protein levels. Meanwhile, NAC pretreatment also blocked the phosphorylation of ERK1/2 and p38 induced by NEFA, and the nucleation of Nrf2 and p53, suggesting that ROS plays a crucial role in regulating the NEFA-induced apoptosis of GCs. Together, these findings provide an improved understanding of the mechanisms underlying GCs apoptosis, which could potentially be useful for improving ovarian function. |
format | Online Article Text |
id | pubmed-7346109 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73461092020-07-14 Non-esterified Fatty Acid-Induced Reactive Oxygen Species Mediated Granulosa Cells Apoptosis Is Regulated by Nrf2/p53 Signaling Pathway Wang, Yiru Li, Chengmin Li, Julang Wang, Genlin Li, Lian Antioxidants (Basel) Article Negative energy balance (NEB) during the perinatal period can affect dairy cow follicular development and reduce the fecundity. Non-esterified fatty acid (NEFA) concentration is elevated during NEB, and is known to be toxic for multiple cell types. In the ovary, NEB increased NEFA, and may influences follicular growth and development. However, the effect and mechanism of NEFA on granulosa cells (GCs) in vitro remains unknown. In this study, we found that NEFA dose-dependently induced apoptosis in primary cultured granulosa cells. Mechanistically, our data showed that NEFA significantly increased reactive oxygen species (ROS) levels, resulting in the activation of endoplasmic reticulum stress (ERS) and eventually cell apoptosis in GCs. Moreover, NEFA also increased the phosphorylation levels of ERK1/2 and p38MAPK pathways, upregulated the expression of p53 and potentially promoted its translocation to the nuclear, thus transcriptionally activated Bax, a downstream gene of this pathway. NEFA also promoted nuclear factor E2 (Nrf2) expression and its level in the nuclear. To elucidate the mechanism of NEFA action, N-acetyl-l-cysteine (NAC), a ROS scavenger was used to verify the role of ROS in NEFA induced apoptosis of GCs. NAC pretreatment reversed the NEFA-induced ERS-related protein and apoptosis-related protein levels. Meanwhile, NAC pretreatment also blocked the phosphorylation of ERK1/2 and p38 induced by NEFA, and the nucleation of Nrf2 and p53, suggesting that ROS plays a crucial role in regulating the NEFA-induced apoptosis of GCs. Together, these findings provide an improved understanding of the mechanisms underlying GCs apoptosis, which could potentially be useful for improving ovarian function. MDPI 2020-06-14 /pmc/articles/PMC7346109/ /pubmed/32545880 http://dx.doi.org/10.3390/antiox9060523 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Yiru Li, Chengmin Li, Julang Wang, Genlin Li, Lian Non-esterified Fatty Acid-Induced Reactive Oxygen Species Mediated Granulosa Cells Apoptosis Is Regulated by Nrf2/p53 Signaling Pathway |
title | Non-esterified Fatty Acid-Induced Reactive Oxygen Species Mediated Granulosa Cells Apoptosis Is Regulated by Nrf2/p53 Signaling Pathway |
title_full | Non-esterified Fatty Acid-Induced Reactive Oxygen Species Mediated Granulosa Cells Apoptosis Is Regulated by Nrf2/p53 Signaling Pathway |
title_fullStr | Non-esterified Fatty Acid-Induced Reactive Oxygen Species Mediated Granulosa Cells Apoptosis Is Regulated by Nrf2/p53 Signaling Pathway |
title_full_unstemmed | Non-esterified Fatty Acid-Induced Reactive Oxygen Species Mediated Granulosa Cells Apoptosis Is Regulated by Nrf2/p53 Signaling Pathway |
title_short | Non-esterified Fatty Acid-Induced Reactive Oxygen Species Mediated Granulosa Cells Apoptosis Is Regulated by Nrf2/p53 Signaling Pathway |
title_sort | non-esterified fatty acid-induced reactive oxygen species mediated granulosa cells apoptosis is regulated by nrf2/p53 signaling pathway |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346109/ https://www.ncbi.nlm.nih.gov/pubmed/32545880 http://dx.doi.org/10.3390/antiox9060523 |
work_keys_str_mv | AT wangyiru nonesterifiedfattyacidinducedreactiveoxygenspeciesmediatedgranulosacellsapoptosisisregulatedbynrf2p53signalingpathway AT lichengmin nonesterifiedfattyacidinducedreactiveoxygenspeciesmediatedgranulosacellsapoptosisisregulatedbynrf2p53signalingpathway AT lijulang nonesterifiedfattyacidinducedreactiveoxygenspeciesmediatedgranulosacellsapoptosisisregulatedbynrf2p53signalingpathway AT wanggenlin nonesterifiedfattyacidinducedreactiveoxygenspeciesmediatedgranulosacellsapoptosisisregulatedbynrf2p53signalingpathway AT lilian nonesterifiedfattyacidinducedreactiveoxygenspeciesmediatedgranulosacellsapoptosisisregulatedbynrf2p53signalingpathway |