Cargando…
Changes in the Number of Membership Functions for Predicting the Gas Volume Fraction in Two-Phase Flow Using Grid Partition Clustering of the ANFIS Method
[Image: see text] A 2D-bubble column reactor (BCR) including gas and liquid phases is simulated, and fluid characteristics such as gas-phase volume fraction and gas-phase turbulence are extracted from the CFD simulations. A type of heuristic algorithm called adaptive network-based fuzzy inference sy...
Autores principales: | Babanezhad, Meisam, Nakhjiri, Ali Taghvaie, Shirazian, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346269/ https://www.ncbi.nlm.nih.gov/pubmed/32656451 http://dx.doi.org/10.1021/acsomega.0c02117 |
Ejemplares similares
-
ANFIS grid partition framework with difference between two sigmoidal membership functions structure for validation of nanofluid flow
por: Pishnamazi, Mahboubeh, et al.
Publicado: (2020) -
Evaluation of product of two sigmoidal membership functions (psigmf) as an ANFIS membership function for prediction of nanofluid temperature
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Influence of number of membership functions on prediction of membrane systems using adaptive network based fuzzy inference system (ANFIS)
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Prediction of Nanofluid Temperature Inside the Cavity
by Integration of Grid Partition Clustering Categorization of a Learning
Structure with the Fuzzy System
por: Nabipour, Narjes, et al.
Publicado: (2020) -
Pattern recognition of the fluid flow in a 3D domain by combination of Lattice Boltzmann and ANFIS methods
por: Babanezhad, Meisam, et al.
Publicado: (2020)