Cargando…
A machine learning framework for accurately recognizing circular RNAs for clinical decision-supporting
BACKGROUND: Circular RNAs (circRNAs) are those RNA molecules that lack the poly (A) tails, which present the closed-loop structure. Recent studies emphasized that some circRNAs imply different functions from canonical transcripts, and further associated with complex diseases. Several computational m...
Autores principales: | Wang, Yidan, Zhang, Xuanping, Wang, Tao, Xing, Jinchun, Wu, Zhun, Li, Wei, Wang, Jiayin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346313/ https://www.ncbi.nlm.nih.gov/pubmed/32646420 http://dx.doi.org/10.1186/s12911-020-1117-0 |
Ejemplares similares
-
An Efficient Algorithm for Sensitively Detecting Circular RNA from RNA-seq Data
por: Zhang, Xuanping, et al.
Publicado: (2018) -
AttnTAP: A Dual-input Framework Incorporating the Attention Mechanism for Accurately Predicting TCR-peptide Binding
por: Xu, Ying, et al.
Publicado: (2022) -
OCRFinder: a noise-tolerance machine learning method for accurately estimating open chromatin regions
por: Ren, Jiayi, et al.
Publicado: (2023) -
A machine learning framework for genotyping the structural variations with copy number variant
por: Zheng, Tian, et al.
Publicado: (2020) -
DeepLION: Deep Multi-Instance Learning Improves the Prediction of Cancer-Associated T Cell Receptors for Accurate Cancer Detection
por: Xu, Ying, et al.
Publicado: (2022)