Cargando…
Interpretable clinical prediction via attention-based neural network
BACKGROUND: The interpretability of results predicted by the machine learning models is vital, especially in the critical fields like healthcare. With the increasingly adoption of electronic healthcare records (EHR) by the medical organizations in the last decade, which accumulated abundant electron...
Autores principales: | Chen, Peipei, Dong, Wei, Wang, Jinliang, Lu, Xudong, Kaymak, Uzay, Huang, Zhengxing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346336/ https://www.ncbi.nlm.nih.gov/pubmed/32646437 http://dx.doi.org/10.1186/s12911-020-1110-7 |
Ejemplares similares
-
Loss-Based Attention for Interpreting Image-Level Prediction of Convolutional Neural Networks
por: Shi, Xiaoshuang, et al.
Publicado: (2021) -
Topic Modeling for Interpretable Text Classification From EHRs
por: Rijcken, Emil, et al.
Publicado: (2022) -
PredictPTB: an interpretable preterm birth prediction model using attention-based recurrent neural networks
por: AlSaad, Rawan, et al.
Publicado: (2022) -
Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications
por: Song, Zitao, et al.
Publicado: (2021) -
A meta-model for computer executable dynamic clinical safety checklists
por: Nan, Shan, et al.
Publicado: (2017)