Cargando…

Identification, collection, and reporting of harms among non-industry-sponsored randomized clinical trials of pharmacologic interventions in the critically ill population: a systematic review

BACKGROUND: Prescribing pharmacologic therapies for critically ill patients requires a careful balancing of risks and benefits. Defining, monitoring, and reporting harms that occur in clinical trials conducted in critically ill populations, however, is challenging given that the natural history of m...

Descripción completa

Detalles Bibliográficos
Autores principales: Moskowitz, Ari, Andersen, Lars W., Holmberg, Mathias J., Grossestreuer, Anne V., Berg, Katherine M., Granfeldt, Asger
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346341/
https://www.ncbi.nlm.nih.gov/pubmed/32641148
http://dx.doi.org/10.1186/s13054-020-03113-z
Descripción
Sumario:BACKGROUND: Prescribing pharmacologic therapies for critically ill patients requires a careful balancing of risks and benefits. Defining, monitoring, and reporting harms that occur in clinical trials conducted in critically ill populations, however, is challenging given that the natural history of most critical illnesses includes progressive multiple organ failure and death. In this study, we assessed harms reporting in clinical trials performed in critically ill populations. METHODS: Randomized, non-industry-sponsored, human clinical trials of pharmacologic interventions in adult critically ill populations published between 2015 and 2018 in high-impact journals were included in this systematic review. Harms data, adherence to Consolidated Standards of Reporting Trials (CONSORT) harms reporting guidelines, and restrictions on harms reporting were recorded. RESULTS: A total of 707 abstracts were screened with 40 trials ultimately being included in the analysis. Included trials represent 28,636 randomized patients with a median of 292 (IQR 100–546) patients per trial. The most common disease states were general critical care (33%) and sepsis (28%). Of 18 included CONSORT items, the median number met was 12 (IQR 9, 14). The most commonly missed items were adverse event (AE) severity grading definitions and AE attribution (relationship of AE to study drug), which were only reported in 35 and 38% of manuscripts, respectively. Half of the manuscripts (48%) provided definitions for recorded AEs. There were 5 studies investigating the effects of corticosteroids in sepsis, with the number of AEs reported per analyzed patient ranging from 0.01 to 1.89. AE definitions in studies of similar/equivalent interventions often varied substantially. Study protocols were available for 30/40 (75%) of studies, with 13 (43%) of those not providing any guidance regarding AE attribution. CONCLUSIONS: Randomized trials of pharmacologic interventions conducted in critically ill populations and published in high impact journals often fail to adequately describe AE definitions, severity, attribution, and collection procedures. Among trials of similar interventions in comparable populations, variation in AE collection and reporting procedures is substantial. These factors may limit a clinician’s ability to accurately balance the potential benefits and harms of an intervention.