Cargando…
Molecular docking and machine learning analysis of Abemaciclib in colon cancer
BACKGROUND: The main challenge in cancer research is the identification of different omic variables that present a prognostic value and personalised diagnosis for each tumour. The fact that the diagnosis is personalised opens the doors to the design and discovery of new specific treatments for each...
Autores principales: | Liñares-Blanco, Jose, Munteanu, Cristian R., Pazos, Alejandro, Fernandez-Lozano, Carlos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346626/ https://www.ncbi.nlm.nih.gov/pubmed/32640984 http://dx.doi.org/10.1186/s12860-020-00295-w |
Ejemplares similares
-
Machine learning analysis of TCGA cancer data
por: Liñares-Blanco, Jose, et al.
Publicado: (2021) -
A review on machine learning approaches and trends in drug discovery
por: Carracedo-Reboredo, Paula, et al.
Publicado: (2021) -
Prediction of high anti-angiogenic activity peptides in silico using a generalized linear model and feature selection
por: Blanco, Jose Liñares, et al.
Publicado: (2018) -
Machine Learning Based Microbiome Signature to Predict Inflammatory Bowel Disease Subtypes
por: Liñares-Blanco, Jose, et al.
Publicado: (2022) -
Abemaciclib for breast cancer
Publicado: (2020)