Cargando…
A Clinician's Guide to Artificial Intelligence: How to Critically Appraise Machine Learning Studies
In recent years, there has been considerable interest in the prospect of machine learning models demonstrating expert-level diagnosis in multiple disease contexts. However, there is concern that the excitement around this field may be associated with inadequate scrutiny of methodology and insufficie...
Autores principales: | Faes, Livia, Liu, Xiaoxuan, Wagner, Siegfried K., Fu, Dun Jack, Balaskas, Konstantinos, Sim, Dawn A., Bachmann, Lucas M., Keane, Pearse A., Denniston, Alastair K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346877/ https://www.ncbi.nlm.nih.gov/pubmed/32704413 http://dx.doi.org/10.1167/tvst.9.2.7 |
Ejemplares similares
-
Insights into Systemic Disease through Retinal Imaging-Based Oculomics
por: Wagner, Siegfried K., et al.
Publicado: (2020) -
Will AI Replace Ophthalmologists?
por: Korot, Edward, et al.
Publicado: (2020) -
Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening
por: Xie, Yuchen, et al.
Publicado: (2020) -
Visual acuity outcome of stable proliferative diabetic retinopathy following initial complete panretinal photocoagulation
por: Fu, Dun Jack, et al.
Publicado: (2022) -
Predicting sex from retinal fundus photographs using automated deep learning
por: Korot, Edward, et al.
Publicado: (2021)