Cargando…
High-Order Sequential Simulation via Statistical Learning in Reproducing Kernel Hilbert Space
The present work proposes a new high-order simulation framework based on statistical learning. The training data consist of the sample data together with a training image, and the learning target is the underlying random field model of spatial attributes of interest. The learning process attempts to...
Autores principales: | Yao, Lingqing, Dimitrakopoulos, Roussos, Gamache, Michel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346981/ https://www.ncbi.nlm.nih.gov/pubmed/32670433 http://dx.doi.org/10.1007/s11004-019-09843-3 |
Ejemplares similares
-
Training Image Free High-Order Stochastic Simulation Based on Aggregated Kernel Statistics
por: Yao, Lingqing, et al.
Publicado: (2021) -
A New Computational Model of High-Order Stochastic Simulation Based on Spatial Legendre Moments
por: Yao, Lingqing, et al.
Publicado: (2018) -
Reproducing kernel hilbert spaces in probability and statistics
por: Berlinet, Alain, et al.
Publicado: (2004) -
A New Non-stationary High-order Spatial Sequential Simulation Method
por: Haji Abolhassani, Amir Abbas, et al.
Publicado: (2022) -
A primer on reproducing kernel Hilbert spaces
por: Manton, Jonathan H, et al.
Publicado: (2015)