Cargando…
Methodological Challenges of Deep Learning in Optical Coherence Tomography for Retinal Diseases: A Review
Artificial intelligence (AI)-based automated classification and segmentation of optical coherence tomography (OCT) features have become increasingly popular. However, its 3-dimensional volumetric nature has made developing an algorithm that generalizes across all patient populations and OCT devices...
Autores principales: | Yanagihara, Ryan T., Lee, Cecilia S., Ting, Daniel Shu Wei, Lee, Aaron Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347025/ https://www.ncbi.nlm.nih.gov/pubmed/32704417 http://dx.doi.org/10.1167/tvst.9.2.11 |
Ejemplares similares
-
Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning
por: Guo, Yukun, et al.
Publicado: (2020) -
Ensemble Deep Learning for Diabetic Retinopathy Detection Using Optical Coherence Tomography Angiography
por: Heisler, Morgan, et al.
Publicado: (2020) -
DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images
por: Cheong, Haris, et al.
Publicado: (2020) -
Development of Deep Learning Models to Predict Best-Corrected Visual Acuity from Optical Coherence Tomography
por: Kawczynski, Michael G., et al.
Publicado: (2020) -
Assessment of Generative Adversarial Networks Model for Synthetic Optical Coherence Tomography Images of Retinal Disorders
por: Zheng, Ce, et al.
Publicado: (2020)