Cargando…
Drought resistance of Camellia oleifera under drought stress: Changes in physiology and growth characteristics
To investigate the growth, physiological changes and mechanism of drought resistance of Camellia oleifera GWu-2 under drought stress conditions, changes in the main growth and physiological indices of GWu-2 under different water gradients were studied. Factor analysis was used to study the differenc...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347177/ https://www.ncbi.nlm.nih.gov/pubmed/32645115 http://dx.doi.org/10.1371/journal.pone.0235795 |
Sumario: | To investigate the growth, physiological changes and mechanism of drought resistance of Camellia oleifera GWu-2 under drought stress conditions, changes in the main growth and physiological indices of GWu-2 under different water gradients were studied. Factor analysis was used to study the differences between indicators under different water gradients, and correlation analysis was implemented to analyze the relationship between different factors. We observed that the growth state, enzyme secretion, stomatal morphology and leaf osmotic adjustment substances were significantly affected by drought stress. In particular, increases in leaf abscisic acid (ABA), indole acetic acid (IAA) and methyl jasmonate (MeJA) contents under drought stress were negatively correlated with the stomatal opening degree, and the ratio of ZR/GA3 was significantly correlated with the growth and physiological indicators of GWu-2, indicating that different hormones respond differently to drought stress and have different functions in the growth regulation and drought resistance of GWu-2. We concluded that the drought resistance mechanism of GWu-2 was controlled by maintaining root growth to obtain the necessary water, increasing the contents of osmotic substances of leaves to maintain water holding capacity, reducing the transpiration of water by increasing leaf ABA, IAA and MeJA content to close stomata and reducing the damage caused by drought by increasing the activity of superoxide dismutase (SOD). |
---|