Cargando…
System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion
Ozonide antimalarials, OZ277 (arterolane) and OZ439 (artefenomel), are synthetic peroxide-based antimalarials with potent activity against the deadliest malaria parasite, Plasmodium falciparum. Here we used a “multi-omics” workflow, in combination with activity-based protein profiling (ABPP), to dem...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347234/ https://www.ncbi.nlm.nih.gov/pubmed/32589689 http://dx.doi.org/10.1371/journal.ppat.1008485 |
_version_ | 1783556555190304768 |
---|---|
author | Giannangelo, Carlo Siddiqui, Ghizal De Paoli, Amanda Anderson, Bethany M. Edgington-Mitchell, Laura E. Charman, Susan A. Creek, Darren J. |
author_facet | Giannangelo, Carlo Siddiqui, Ghizal De Paoli, Amanda Anderson, Bethany M. Edgington-Mitchell, Laura E. Charman, Susan A. Creek, Darren J. |
author_sort | Giannangelo, Carlo |
collection | PubMed |
description | Ozonide antimalarials, OZ277 (arterolane) and OZ439 (artefenomel), are synthetic peroxide-based antimalarials with potent activity against the deadliest malaria parasite, Plasmodium falciparum. Here we used a “multi-omics” workflow, in combination with activity-based protein profiling (ABPP), to demonstrate that peroxide antimalarials initially target the haemoglobin (Hb) digestion pathway to kill malaria parasites. Time-dependent metabolomic profiling of ozonide-treated P. falciparum infected red blood cells revealed a rapid depletion of short Hb-derived peptides followed by subsequent alterations in lipid and nucleotide metabolism, while untargeted peptidomics showed accumulation of longer Hb-derived peptides. Quantitative proteomics and ABPP assays demonstrated that Hb-digesting proteases were increased in abundance and activity following treatment, respectively. Ozonide-induced depletion of short Hb-derived peptides was less extensive in a drug-treated K13-mutant artemisinin resistant parasite line (Cam3.II(R539T)) than in the drug-treated isogenic sensitive strain (Cam3.II(rev)), further confirming the association between ozonide activity and Hb catabolism. To demonstrate that compromised Hb catabolism may be a primary mechanism involved in ozonide antimalarial activity, we showed that parasites forced to rely solely on Hb digestion for amino acids became hypersensitive to short ozonide exposures. Quantitative proteomics analysis also revealed parasite proteins involved in translation and the ubiquitin-proteasome system were enriched following drug treatment, suggestive of the parasite engaging a stress response to mitigate ozonide-induced damage. Taken together, these data point to a mechanism of action involving initial impairment of Hb catabolism, and indicate that the parasite regulates protein turnover to manage ozonide-induced damage. |
format | Online Article Text |
id | pubmed-7347234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-73472342020-07-20 System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion Giannangelo, Carlo Siddiqui, Ghizal De Paoli, Amanda Anderson, Bethany M. Edgington-Mitchell, Laura E. Charman, Susan A. Creek, Darren J. PLoS Pathog Research Article Ozonide antimalarials, OZ277 (arterolane) and OZ439 (artefenomel), are synthetic peroxide-based antimalarials with potent activity against the deadliest malaria parasite, Plasmodium falciparum. Here we used a “multi-omics” workflow, in combination with activity-based protein profiling (ABPP), to demonstrate that peroxide antimalarials initially target the haemoglobin (Hb) digestion pathway to kill malaria parasites. Time-dependent metabolomic profiling of ozonide-treated P. falciparum infected red blood cells revealed a rapid depletion of short Hb-derived peptides followed by subsequent alterations in lipid and nucleotide metabolism, while untargeted peptidomics showed accumulation of longer Hb-derived peptides. Quantitative proteomics and ABPP assays demonstrated that Hb-digesting proteases were increased in abundance and activity following treatment, respectively. Ozonide-induced depletion of short Hb-derived peptides was less extensive in a drug-treated K13-mutant artemisinin resistant parasite line (Cam3.II(R539T)) than in the drug-treated isogenic sensitive strain (Cam3.II(rev)), further confirming the association between ozonide activity and Hb catabolism. To demonstrate that compromised Hb catabolism may be a primary mechanism involved in ozonide antimalarial activity, we showed that parasites forced to rely solely on Hb digestion for amino acids became hypersensitive to short ozonide exposures. Quantitative proteomics analysis also revealed parasite proteins involved in translation and the ubiquitin-proteasome system were enriched following drug treatment, suggestive of the parasite engaging a stress response to mitigate ozonide-induced damage. Taken together, these data point to a mechanism of action involving initial impairment of Hb catabolism, and indicate that the parasite regulates protein turnover to manage ozonide-induced damage. Public Library of Science 2020-06-26 /pmc/articles/PMC7347234/ /pubmed/32589689 http://dx.doi.org/10.1371/journal.ppat.1008485 Text en © 2020 Giannangelo et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Giannangelo, Carlo Siddiqui, Ghizal De Paoli, Amanda Anderson, Bethany M. Edgington-Mitchell, Laura E. Charman, Susan A. Creek, Darren J. System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion |
title | System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion |
title_full | System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion |
title_fullStr | System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion |
title_full_unstemmed | System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion |
title_short | System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion |
title_sort | system-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting plasmodium falciparum haemoglobin digestion |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347234/ https://www.ncbi.nlm.nih.gov/pubmed/32589689 http://dx.doi.org/10.1371/journal.ppat.1008485 |
work_keys_str_mv | AT giannangelocarlo systemwidebiochemicalanalysisrevealsozonideantimalarialsinitiallyactbydisruptingplasmodiumfalciparumhaemoglobindigestion AT siddiquighizal systemwidebiochemicalanalysisrevealsozonideantimalarialsinitiallyactbydisruptingplasmodiumfalciparumhaemoglobindigestion AT depaoliamanda systemwidebiochemicalanalysisrevealsozonideantimalarialsinitiallyactbydisruptingplasmodiumfalciparumhaemoglobindigestion AT andersonbethanym systemwidebiochemicalanalysisrevealsozonideantimalarialsinitiallyactbydisruptingplasmodiumfalciparumhaemoglobindigestion AT edgingtonmitchelllaurae systemwidebiochemicalanalysisrevealsozonideantimalarialsinitiallyactbydisruptingplasmodiumfalciparumhaemoglobindigestion AT charmansusana systemwidebiochemicalanalysisrevealsozonideantimalarialsinitiallyactbydisruptingplasmodiumfalciparumhaemoglobindigestion AT creekdarrenj systemwidebiochemicalanalysisrevealsozonideantimalarialsinitiallyactbydisruptingplasmodiumfalciparumhaemoglobindigestion |