Cargando…
Machine learning to assist clinical decision-making during the COVID-19 pandemic
BACKGROUND: The number of cases from the coronavirus disease 2019 (COVID-19) global pandemic has overwhelmed existing medical facilities and forced clinicians, patients, and families to make pivotal decisions with limited time and information. MAIN BODY: While machine learning (ML) methods have been...
Autores principales: | Debnath, Shubham, Barnaby, Douglas P., Coppa, Kevin, Makhnevich, Alexander, Kim, Eun Ji, Chatterjee, Saurav, Tóth, Viktor, Levy, Todd J., Paradis, Marc d., Cohen, Stuart L., Hirsch, Jamie S., Zanos, Theodoros P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347420/ https://www.ncbi.nlm.nih.gov/pubmed/32665967 http://dx.doi.org/10.1186/s42234-020-00050-8 |
Ejemplares similares
-
Development and validation of self-monitoring auto-updating prognostic models of survival for hospitalized COVID-19 patients
por: Levy, Todd J., et al.
Publicado: (2022) -
The association of clinically relevant variables with chest radiograph lung disease burden quantified in real-time by radiologists upon initial presentation in individuals hospitalized with COVID-19
por: Levy, Todd, et al.
Publicado: (2023) -
A method to quantify autonomic nervous system function in healthy, able-bodied individuals
por: Debnath, Shubham, et al.
Publicado: (2021) -
A radiographic, deep transfer learning framework, adapted to estimate lung opacities from chest x-rays
por: Vardhan, Avantika, et al.
Publicado: (2023) -
A Machine Learning Prediction Model of Respiratory Failure Within 48 Hours of Patient Admission for COVID-19: Model Development and Validation
por: Bolourani, Siavash, et al.
Publicado: (2021)