Cargando…
EEF1A1 deacetylation enables transcriptional activation of remyelination
Remyelination of the peripheral and central nervous systems (PNS and CNS, respectively) is a prerequisite for functional recovery after lesion. However, this process is not always optimal and becomes inefficient in the course of multiple sclerosis. Here we show that, when acetylated, eukaryotic elon...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347577/ https://www.ncbi.nlm.nih.gov/pubmed/32647127 http://dx.doi.org/10.1038/s41467-020-17243-z |
_version_ | 1783556615864057856 |
---|---|
author | Duman, Mert Vaquié, Adrien Nocera, Gianluigi Heller, Manfred Stumpe, Michael Siva Sankar, Devanarayanan Dengjel, Jörn Meijer, Dies Yamaguchi, Teppei Matthias, Patrick Zeis, Thomas Schaeren-Wiemers, Nicole Hayoz, Antoinette Ruff, Sophie Jacob, Claire |
author_facet | Duman, Mert Vaquié, Adrien Nocera, Gianluigi Heller, Manfred Stumpe, Michael Siva Sankar, Devanarayanan Dengjel, Jörn Meijer, Dies Yamaguchi, Teppei Matthias, Patrick Zeis, Thomas Schaeren-Wiemers, Nicole Hayoz, Antoinette Ruff, Sophie Jacob, Claire |
author_sort | Duman, Mert |
collection | PubMed |
description | Remyelination of the peripheral and central nervous systems (PNS and CNS, respectively) is a prerequisite for functional recovery after lesion. However, this process is not always optimal and becomes inefficient in the course of multiple sclerosis. Here we show that, when acetylated, eukaryotic elongation factor 1A1 (eEF1A1) negatively regulates PNS and CNS remyelination. Acetylated eEF1A1 (Ac-eEF1A1) translocates into the nucleus of myelinating cells where it binds to Sox10, a key transcription factor for PNS and CNS myelination and remyelination, to drag Sox10 out of the nucleus. We show that the lysine acetyltransferase Tip60 acetylates eEF1A1, whereas the histone deacetylase HDAC2 deacetylates eEF1A1. Promoting eEF1A1 deacetylation maintains the activation of Sox10 target genes and increases PNS and CNS remyelination efficiency. Taken together, these data identify a major mechanism of Sox10 regulation, which appears promising for future translational studies on PNS and CNS remyelination. |
format | Online Article Text |
id | pubmed-7347577 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-73475772020-07-13 EEF1A1 deacetylation enables transcriptional activation of remyelination Duman, Mert Vaquié, Adrien Nocera, Gianluigi Heller, Manfred Stumpe, Michael Siva Sankar, Devanarayanan Dengjel, Jörn Meijer, Dies Yamaguchi, Teppei Matthias, Patrick Zeis, Thomas Schaeren-Wiemers, Nicole Hayoz, Antoinette Ruff, Sophie Jacob, Claire Nat Commun Article Remyelination of the peripheral and central nervous systems (PNS and CNS, respectively) is a prerequisite for functional recovery after lesion. However, this process is not always optimal and becomes inefficient in the course of multiple sclerosis. Here we show that, when acetylated, eukaryotic elongation factor 1A1 (eEF1A1) negatively regulates PNS and CNS remyelination. Acetylated eEF1A1 (Ac-eEF1A1) translocates into the nucleus of myelinating cells where it binds to Sox10, a key transcription factor for PNS and CNS myelination and remyelination, to drag Sox10 out of the nucleus. We show that the lysine acetyltransferase Tip60 acetylates eEF1A1, whereas the histone deacetylase HDAC2 deacetylates eEF1A1. Promoting eEF1A1 deacetylation maintains the activation of Sox10 target genes and increases PNS and CNS remyelination efficiency. Taken together, these data identify a major mechanism of Sox10 regulation, which appears promising for future translational studies on PNS and CNS remyelination. Nature Publishing Group UK 2020-07-09 /pmc/articles/PMC7347577/ /pubmed/32647127 http://dx.doi.org/10.1038/s41467-020-17243-z Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Duman, Mert Vaquié, Adrien Nocera, Gianluigi Heller, Manfred Stumpe, Michael Siva Sankar, Devanarayanan Dengjel, Jörn Meijer, Dies Yamaguchi, Teppei Matthias, Patrick Zeis, Thomas Schaeren-Wiemers, Nicole Hayoz, Antoinette Ruff, Sophie Jacob, Claire EEF1A1 deacetylation enables transcriptional activation of remyelination |
title | EEF1A1 deacetylation enables transcriptional activation of remyelination |
title_full | EEF1A1 deacetylation enables transcriptional activation of remyelination |
title_fullStr | EEF1A1 deacetylation enables transcriptional activation of remyelination |
title_full_unstemmed | EEF1A1 deacetylation enables transcriptional activation of remyelination |
title_short | EEF1A1 deacetylation enables transcriptional activation of remyelination |
title_sort | eef1a1 deacetylation enables transcriptional activation of remyelination |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347577/ https://www.ncbi.nlm.nih.gov/pubmed/32647127 http://dx.doi.org/10.1038/s41467-020-17243-z |
work_keys_str_mv | AT dumanmert eef1a1deacetylationenablestranscriptionalactivationofremyelination AT vaquieadrien eef1a1deacetylationenablestranscriptionalactivationofremyelination AT noceragianluigi eef1a1deacetylationenablestranscriptionalactivationofremyelination AT hellermanfred eef1a1deacetylationenablestranscriptionalactivationofremyelination AT stumpemichael eef1a1deacetylationenablestranscriptionalactivationofremyelination AT sivasankardevanarayanan eef1a1deacetylationenablestranscriptionalactivationofremyelination AT dengjeljorn eef1a1deacetylationenablestranscriptionalactivationofremyelination AT meijerdies eef1a1deacetylationenablestranscriptionalactivationofremyelination AT yamaguchiteppei eef1a1deacetylationenablestranscriptionalactivationofremyelination AT matthiaspatrick eef1a1deacetylationenablestranscriptionalactivationofremyelination AT zeisthomas eef1a1deacetylationenablestranscriptionalactivationofremyelination AT schaerenwiemersnicole eef1a1deacetylationenablestranscriptionalactivationofremyelination AT hayozantoinette eef1a1deacetylationenablestranscriptionalactivationofremyelination AT ruffsophie eef1a1deacetylationenablestranscriptionalactivationofremyelination AT jacobclaire eef1a1deacetylationenablestranscriptionalactivationofremyelination |