Cargando…
Artificial intelligence to improve back pain outcomes and lessons learnt from clinical classification approaches: three systematic reviews
Artificial intelligence and machine learning (AI/ML) could enhance the ability to detect patterns of clinical characteristics in low-back pain (LBP) and guide treatment. We conducted three systematic reviews to address the following aims: (a) review the status of AI/ML research in LBP, (b) compare i...
Autores principales: | Tagliaferri, Scott D., Angelova, Maia, Zhao, Xiaohui, Owen, Patrick J., Miller, Clint T., Wilkin, Tim, Belavy, Daniel L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347608/ https://www.ncbi.nlm.nih.gov/pubmed/32665978 http://dx.doi.org/10.1038/s41746-020-0303-x |
Ejemplares similares
-
Chronic back pain sub-grouped via psychosocial, brain and physical factors using machine learning
por: Tagliaferri, Scott D., et al.
Publicado: (2022) -
Towards data-driven biopsychosocial classification of non-specific chronic low back pain: a pilot study
por: Tagliaferri, Scott D., et al.
Publicado: (2023) -
Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study
por: Belavy, Daniel L., et al.
Publicado: (2023) -
Clinician education unlikely effective for guideline-adherent medication prescription in low back pain: systematic review and meta-analysis of RCTs
por: Belavy, Daniel L, et al.
Publicado: (2022) -
Which specific modes of exercise training are most effective for treating low back pain? Network meta-analysis
por: Owen, Patrick J, et al.
Publicado: (2020)