Cargando…
Prediction of malaria transmission drivers in Anopheles mosquitoes using artificial intelligence coupled to MALDI-TOF mass spectrometry
Vector control programmes are a strategic priority in the fight against malaria. However, vector control interventions require rigorous monitoring. Entomological tools for characterizing malaria transmission drivers are limited and are difficult to establish in the field. To predict Anopheles driver...
Autores principales: | Nabet, Cécile, Chaline, Aurélien, Franetich, Jean-François, Brossas, Jean-Yves, Shahmirian, Noémie, Silvie, Olivier, Tannier, Xavier, Piarroux, Renaud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347643/ https://www.ncbi.nlm.nih.gov/pubmed/32647135 http://dx.doi.org/10.1038/s41598-020-68272-z |
Ejemplares similares
-
Improving the Detection of Epidemic Clones in Candida parapsilosis Outbreaks by Combining MALDI-TOF Mass Spectrometry and Deep Learning Approaches
por: Mohammad, Noshine, et al.
Publicado: (2023) -
Identification of a clonal population of Aspergillus flavus by MALDI-TOF mass spectrometry using deep learning
por: Normand, Anne-Cécile, et al.
Publicado: (2022) -
New assessment of Anopheles vector species identification using MALDI-TOF MS
por: Nabet, Cécile, et al.
Publicado: (2021) -
Identification of French Guiana sand flies using MALDI-TOF mass spectrometry with a new mass spectra library
por: Chavy, Agathe, et al.
Publicado: (2019) -
MALDI-TOF mass spectrometry identification of mosquitoes collected in Vietnam
por: Huynh, Ly Na, et al.
Publicado: (2022)