Cargando…
Object detection based on an adaptive attention mechanism
Object detection is an important component of computer vision. Most of the recent successful object detection methods are based on convolutional neural networks (CNNs). To improve the performance of these networks, researchers have designed many different architectures. They found that the CNN perfo...
Autores principales: | Li, Wei, Liu, Kai, Zhang, Lizhe, Cheng, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347846/ https://www.ncbi.nlm.nih.gov/pubmed/32647299 http://dx.doi.org/10.1038/s41598-020-67529-x |
Ejemplares similares
-
FRD-CNN: Object detection based on small-scale convolutional neural networks and feature reuse
por: Li, Wei, et al.
Publicado: (2019) -
Underwater Object Detection Using TC-YOLO with Attention Mechanisms
por: Liu, Kun, et al.
Publicado: (2023) -
Multiple Attention Mechanism Enhanced YOLOX for Remote Sensing Object Detection
por: Shen, Chao, et al.
Publicado: (2023) -
Object-Based Attention Guided by An Invisible Object
por: Zhang, Xilin, et al.
Publicado: (2011) -
Prism adaptation does not alter object-based attention in healthy participants
por: Bultitude, Janet H., et al.
Publicado: (2013)