Cargando…
Interactive machine learning for soybean seed and seedling quality classification
New computer vision solutions combined with artificial intelligence algorithms can help recognize patterns in biological images, reducing subjectivity and optimizing the analysis process. The aim of this study was to propose an approach based on interactive and traditional machine learning methods t...
Autores principales: | de Medeiros, André Dantas, Capobiango, Nayara Pereira, da Silva, José Maria, da Silva, Laércio Junio, da Silva, Clíssia Barboza, dos Santos Dias, Denise Cunha Fernandes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347887/ https://www.ncbi.nlm.nih.gov/pubmed/32647230 http://dx.doi.org/10.1038/s41598-020-68273-y |
Ejemplares similares
-
Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging
por: de Medeiros, André Dantas, et al.
Publicado: (2020) -
Autofluorescence-spectral imaging as an innovative method for rapid, non-destructive and reliable assessing of soybean seed quality
por: Barboza da Silva, Clíssia, et al.
Publicado: (2021) -
The role of the biochemical composition of soybean seeds in the tolerance to deterioration under natural and artificial aging
por: Silva, Martha Freire da, et al.
Publicado: (2023) -
A Reliable Method to Recognize Soybean Seed Maturation Stages Based on Autofluorescence-Spectral Imaging Combined With Machine Learning Algorithms
por: Batista, Thiago Barbosa, et al.
Publicado: (2022) -
Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging
por: França-Silva, Fabiano, et al.
Publicado: (2020)