Cargando…
A supervised learning framework for chromatin loop detection in genome-wide contact maps
Accurately predicting chromatin loops from genome-wide interaction matrices such as Hi-C data is critical to deepening our understanding of proper gene regulation. Current approaches are mainly focused on searching for statistically enriched dots on a genome-wide map. However, given the availability...
Autores principales: | Salameh, Tarik J., Wang, Xiaotao, Song, Fan, Zhang, Bo, Wright, Sage M., Khunsriraksakul, Chachrit, Ruan, Yijun, Yue, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347923/ https://www.ncbi.nlm.nih.gov/pubmed/32647330 http://dx.doi.org/10.1038/s41467-020-17239-9 |
Ejemplares similares
-
Factors associated with pregnancy termination in women of childbearing age in 36 low-and middle-income countries
por: Ba, Djibril M., et al.
Publicado: (2023) -
Construction and Application of Polygenic Risk Scores in Autoimmune Diseases
por: Khunsriraksakul, Chachrit, et al.
Publicado: (2022) -
EagleC: A deep-learning framework for detecting a full range of structural variations from bulk and single-cell contact maps
por: Wang, Xiaotao, et al.
Publicado: (2022) -
Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts
por: Bell, Jason C, et al.
Publicado: (2018) -
Comparing chromatin contact maps at scale: methods and insights
por: Gunsalus, Laura M., et al.
Publicado: (2023)