Cargando…
SCAU-Net: Spatial-Channel Attention U-Net for Gland Segmentation
With the development of medical technology, image semantic segmentation is of great significance for morphological analysis, quantification, and diagnosis of human tissues. However, manual detection and segmentation is a time-consuming task. Especially for biomedical image, only experts are able to...
Autores principales: | Zhao, Peng, Zhang, Jindi, Fang, Weijia, Deng, Shuiguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347985/ https://www.ncbi.nlm.nih.gov/pubmed/32719781 http://dx.doi.org/10.3389/fbioe.2020.00670 |
Ejemplares similares
-
Nuclear Segmentation in Histopathological Images Using Two-Stage Stacked U-Nets With Attention Mechanism
por: Kong, Yan, et al.
Publicado: (2020) -
ASCU-Net: Attention Gate, Spatial and Channel Attention U-Net for Skin Lesion Segmentation
por: Tong, Xiaozhong, et al.
Publicado: (2021) -
Automated segmentation of vertebral cortex with 3D U-Net-based deep convolutional neural network
por: Li, Yang, et al.
Publicado: (2022) -
Development, Validation and Comparison of Artificial Neural Network Models and Logistic Regression Models Predicting Survival of Unresectable Pancreatic Cancer
por: Tong, Zhou, et al.
Publicado: (2020) -
PAC-Net: Multi-pathway FPN with position attention guided connections and vertex distance IoU for 3D medical image detection
por: Xu, Zhenghua, et al.
Publicado: (2023)