Cargando…
In-Ear EEG Based Attention State Classification Using Echo State Network
It is important to maintain attention when carrying out significant daily-life tasks that require high levels of safety and efficiency. Since degradation of attention can sometimes have dire consequences, various brain activity measurement devices such as electroencephalography (EEG) systems have be...
Autores principales: | Jeong, Dong-Hwa, Jeong, Jaeseung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7348757/ https://www.ncbi.nlm.nih.gov/pubmed/32466505 http://dx.doi.org/10.3390/brainsci10060321 |
Ejemplares similares
-
Pattern classification of EEG signals reveals perceptual and attentional states
por: List, Alexandra, et al.
Publicado: (2017) -
Recovery of computation capability for neural networks from damaged states using self-organized criticality
por: Kim, Hoon-Hee, et al.
Publicado: (2010) -
Training echo state networks for rotation-invariant bone marrow cell classification
por: Kainz, Philipp, et al.
Publicado: (2016) -
An internet traffic classification method based on echo state network and improved salp swarm algorithm
por: Zhang, Meijia, et al.
Publicado: (2022) -
Ear-EEG Measures of Auditory Attention to Continuous Speech
por: Holtze, Björn, et al.
Publicado: (2022)