Cargando…
Analysis of HBV Genomes Integrated into the Genomes of Human Hepatoma PLC/PRF/5 Cells by HBV Sequence Capture-Based Next-Generation Sequencing
Hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma (HCC) worldwide. The integration of HBV genomic DNA into the host genome occurs randomly, early after infection, and is associated with hepatocarcinogenesis in HBV-infected patients. Therefore, it is important to analyz...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7348787/ https://www.ncbi.nlm.nih.gov/pubmed/32570699 http://dx.doi.org/10.3390/genes11060661 |
Sumario: | Hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma (HCC) worldwide. The integration of HBV genomic DNA into the host genome occurs randomly, early after infection, and is associated with hepatocarcinogenesis in HBV-infected patients. Therefore, it is important to analyze HBV genome integration. We analyzed HBV genome integration in human hepatoma PLC/PRF/5 cells by HBV sequence capture-based next-generation sequencing (NGS) methods. We confirmed the results by using Sanger sequencing methods. We observed that HBV genotype A is integrated into the genome of PLC/PRF/5 cells. HBV sequence capture-based NGS is useful for the analysis of HBV genome integrants and their locations in the human genome. Among the HBV genome integrants, we performed functional analysis and demonstrated the automatic expression of some HBV proteins encoded by HBV integrants from chromosomes 3 and 11 in Huh7 cells transfected with these DNA sequences. HBV sequence capture-based NGS may be a useful tool for the assessment of HBV genome integration into the human genome in clinical samples and suggests new strategies for hepatocarcinogenesis in HBV infection. |
---|