Cargando…

Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging

Conventional methods for detecting seed-borne fungi are laborious and time-consuming, requiring specialized analysts for characterization of pathogenic fungi on seed. Multispectral imaging (MSI) combined with machine vision was used as an alternative method to detect Drechslera avenae (Eidam) Sharif...

Descripción completa

Detalles Bibliográficos
Autores principales: França-Silva, Fabiano, Rego, Carlos Henrique Queiroz, Gomes-Junior, Francisco Guilhien, de Moraes, Maria Heloisa Duarte, de Medeiros, André Dantas, da Silva, Clíssia Barboza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7348857/
https://www.ncbi.nlm.nih.gov/pubmed/32545563
http://dx.doi.org/10.3390/s20123343
_version_ 1783556928370114560
author França-Silva, Fabiano
Rego, Carlos Henrique Queiroz
Gomes-Junior, Francisco Guilhien
de Moraes, Maria Heloisa Duarte
de Medeiros, André Dantas
da Silva, Clíssia Barboza
author_facet França-Silva, Fabiano
Rego, Carlos Henrique Queiroz
Gomes-Junior, Francisco Guilhien
de Moraes, Maria Heloisa Duarte
de Medeiros, André Dantas
da Silva, Clíssia Barboza
author_sort França-Silva, Fabiano
collection PubMed
description Conventional methods for detecting seed-borne fungi are laborious and time-consuming, requiring specialized analysts for characterization of pathogenic fungi on seed. Multispectral imaging (MSI) combined with machine vision was used as an alternative method to detect Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in black oat seeds (Avena strigosa Schreb). The seeds were inoculated with Drechslera avenae (D. avenae) and then incubated for 24, 72 and 120 h. Multispectral images of non-infested and infested seeds were acquired at 19 wavelengths within the spectral range of 365 to 970 nm. A classification model based on linear discriminant analysis (LDA) was created using reflectance, color, and texture features of the seed images. The model developed showed high performance of MSI in detecting D. avenae in black oat seeds, particularly using color and texture features from seeds incubated for 120 h, with an accuracy of 0.86 in independent validation. The high precision of the classifier showed that the method using images captured in the Ultraviolet A region (365 nm) could be easily used to classify black oat seeds according to their health status, and results can be achieved more rapidly and effectively compared to conventional methods.
format Online
Article
Text
id pubmed-7348857
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-73488572020-07-22 Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging França-Silva, Fabiano Rego, Carlos Henrique Queiroz Gomes-Junior, Francisco Guilhien de Moraes, Maria Heloisa Duarte de Medeiros, André Dantas da Silva, Clíssia Barboza Sensors (Basel) Article Conventional methods for detecting seed-borne fungi are laborious and time-consuming, requiring specialized analysts for characterization of pathogenic fungi on seed. Multispectral imaging (MSI) combined with machine vision was used as an alternative method to detect Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in black oat seeds (Avena strigosa Schreb). The seeds were inoculated with Drechslera avenae (D. avenae) and then incubated for 24, 72 and 120 h. Multispectral images of non-infested and infested seeds were acquired at 19 wavelengths within the spectral range of 365 to 970 nm. A classification model based on linear discriminant analysis (LDA) was created using reflectance, color, and texture features of the seed images. The model developed showed high performance of MSI in detecting D. avenae in black oat seeds, particularly using color and texture features from seeds incubated for 120 h, with an accuracy of 0.86 in independent validation. The high precision of the classifier showed that the method using images captured in the Ultraviolet A region (365 nm) could be easily used to classify black oat seeds according to their health status, and results can be achieved more rapidly and effectively compared to conventional methods. MDPI 2020-06-12 /pmc/articles/PMC7348857/ /pubmed/32545563 http://dx.doi.org/10.3390/s20123343 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
França-Silva, Fabiano
Rego, Carlos Henrique Queiroz
Gomes-Junior, Francisco Guilhien
de Moraes, Maria Heloisa Duarte
de Medeiros, André Dantas
da Silva, Clíssia Barboza
Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging
title Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging
title_full Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging
title_fullStr Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging
title_full_unstemmed Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging
title_short Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging
title_sort detection of drechslera avenae (eidam) sharif [helminthosporium avenae (eidam)] in black oat seeds (avena strigosa schreb) using multispectral imaging
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7348857/
https://www.ncbi.nlm.nih.gov/pubmed/32545563
http://dx.doi.org/10.3390/s20123343
work_keys_str_mv AT francasilvafabiano detectionofdrechsleraavenaeeidamsharifhelminthosporiumavenaeeidaminblackoatseedsavenastrigosaschrebusingmultispectralimaging
AT regocarloshenriquequeiroz detectionofdrechsleraavenaeeidamsharifhelminthosporiumavenaeeidaminblackoatseedsavenastrigosaschrebusingmultispectralimaging
AT gomesjuniorfranciscoguilhien detectionofdrechsleraavenaeeidamsharifhelminthosporiumavenaeeidaminblackoatseedsavenastrigosaschrebusingmultispectralimaging
AT demoraesmariaheloisaduarte detectionofdrechsleraavenaeeidamsharifhelminthosporiumavenaeeidaminblackoatseedsavenastrigosaschrebusingmultispectralimaging
AT demedeirosandredantas detectionofdrechsleraavenaeeidamsharifhelminthosporiumavenaeeidaminblackoatseedsavenastrigosaschrebusingmultispectralimaging
AT dasilvaclissiabarboza detectionofdrechsleraavenaeeidamsharifhelminthosporiumavenaeeidaminblackoatseedsavenastrigosaschrebusingmultispectralimaging