Cargando…
Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging
Conventional methods for detecting seed-borne fungi are laborious and time-consuming, requiring specialized analysts for characterization of pathogenic fungi on seed. Multispectral imaging (MSI) combined with machine vision was used as an alternative method to detect Drechslera avenae (Eidam) Sharif...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7348857/ https://www.ncbi.nlm.nih.gov/pubmed/32545563 http://dx.doi.org/10.3390/s20123343 |
_version_ | 1783556928370114560 |
---|---|
author | França-Silva, Fabiano Rego, Carlos Henrique Queiroz Gomes-Junior, Francisco Guilhien de Moraes, Maria Heloisa Duarte de Medeiros, André Dantas da Silva, Clíssia Barboza |
author_facet | França-Silva, Fabiano Rego, Carlos Henrique Queiroz Gomes-Junior, Francisco Guilhien de Moraes, Maria Heloisa Duarte de Medeiros, André Dantas da Silva, Clíssia Barboza |
author_sort | França-Silva, Fabiano |
collection | PubMed |
description | Conventional methods for detecting seed-borne fungi are laborious and time-consuming, requiring specialized analysts for characterization of pathogenic fungi on seed. Multispectral imaging (MSI) combined with machine vision was used as an alternative method to detect Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in black oat seeds (Avena strigosa Schreb). The seeds were inoculated with Drechslera avenae (D. avenae) and then incubated for 24, 72 and 120 h. Multispectral images of non-infested and infested seeds were acquired at 19 wavelengths within the spectral range of 365 to 970 nm. A classification model based on linear discriminant analysis (LDA) was created using reflectance, color, and texture features of the seed images. The model developed showed high performance of MSI in detecting D. avenae in black oat seeds, particularly using color and texture features from seeds incubated for 120 h, with an accuracy of 0.86 in independent validation. The high precision of the classifier showed that the method using images captured in the Ultraviolet A region (365 nm) could be easily used to classify black oat seeds according to their health status, and results can be achieved more rapidly and effectively compared to conventional methods. |
format | Online Article Text |
id | pubmed-7348857 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73488572020-07-22 Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging França-Silva, Fabiano Rego, Carlos Henrique Queiroz Gomes-Junior, Francisco Guilhien de Moraes, Maria Heloisa Duarte de Medeiros, André Dantas da Silva, Clíssia Barboza Sensors (Basel) Article Conventional methods for detecting seed-borne fungi are laborious and time-consuming, requiring specialized analysts for characterization of pathogenic fungi on seed. Multispectral imaging (MSI) combined with machine vision was used as an alternative method to detect Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in black oat seeds (Avena strigosa Schreb). The seeds were inoculated with Drechslera avenae (D. avenae) and then incubated for 24, 72 and 120 h. Multispectral images of non-infested and infested seeds were acquired at 19 wavelengths within the spectral range of 365 to 970 nm. A classification model based on linear discriminant analysis (LDA) was created using reflectance, color, and texture features of the seed images. The model developed showed high performance of MSI in detecting D. avenae in black oat seeds, particularly using color and texture features from seeds incubated for 120 h, with an accuracy of 0.86 in independent validation. The high precision of the classifier showed that the method using images captured in the Ultraviolet A region (365 nm) could be easily used to classify black oat seeds according to their health status, and results can be achieved more rapidly and effectively compared to conventional methods. MDPI 2020-06-12 /pmc/articles/PMC7348857/ /pubmed/32545563 http://dx.doi.org/10.3390/s20123343 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article França-Silva, Fabiano Rego, Carlos Henrique Queiroz Gomes-Junior, Francisco Guilhien de Moraes, Maria Heloisa Duarte de Medeiros, André Dantas da Silva, Clíssia Barboza Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging |
title | Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging |
title_full | Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging |
title_fullStr | Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging |
title_full_unstemmed | Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging |
title_short | Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging |
title_sort | detection of drechslera avenae (eidam) sharif [helminthosporium avenae (eidam)] in black oat seeds (avena strigosa schreb) using multispectral imaging |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7348857/ https://www.ncbi.nlm.nih.gov/pubmed/32545563 http://dx.doi.org/10.3390/s20123343 |
work_keys_str_mv | AT francasilvafabiano detectionofdrechsleraavenaeeidamsharifhelminthosporiumavenaeeidaminblackoatseedsavenastrigosaschrebusingmultispectralimaging AT regocarloshenriquequeiroz detectionofdrechsleraavenaeeidamsharifhelminthosporiumavenaeeidaminblackoatseedsavenastrigosaschrebusingmultispectralimaging AT gomesjuniorfranciscoguilhien detectionofdrechsleraavenaeeidamsharifhelminthosporiumavenaeeidaminblackoatseedsavenastrigosaschrebusingmultispectralimaging AT demoraesmariaheloisaduarte detectionofdrechsleraavenaeeidamsharifhelminthosporiumavenaeeidaminblackoatseedsavenastrigosaschrebusingmultispectralimaging AT demedeirosandredantas detectionofdrechsleraavenaeeidamsharifhelminthosporiumavenaeeidaminblackoatseedsavenastrigosaschrebusingmultispectralimaging AT dasilvaclissiabarboza detectionofdrechsleraavenaeeidamsharifhelminthosporiumavenaeeidaminblackoatseedsavenastrigosaschrebusingmultispectralimaging |