Cargando…
EEG-Brain Activity Monitoring and Predictive Analysis of Signals Using Artificial Neural Networks
Predictive observation and real-time analysis of the values of biomedical signals and automatic detection of epileptic seizures before onset are beneficial for the development of warning systems for patients because the patient, once informed that an epilepsy seizure is about to start, can take safe...
Autores principales: | Aileni, Raluca Maria, Pasca, Sever, Florescu, Adriana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7348967/ https://www.ncbi.nlm.nih.gov/pubmed/32545622 http://dx.doi.org/10.3390/s20123346 |
Ejemplares similares
-
Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia
por: Gu, Yue, et al.
Publicado: (2019) -
EEG Signals Analysis Using Multiscale Entropy for Depth of Anesthesia Monitoring during Surgery through Artificial Neural Networks
por: Liu, Quan, et al.
Publicado: (2015) -
EEG signal analysis using classification techniques: Logistic regression, artificial neural networks, support vector machines, and convolutional neural networks
por: Guerrero, Maria Camila, et al.
Publicado: (2021) -
Entropy-Based Emotion Recognition from Multichannel EEG Signals Using Artificial Neural Network
por: Aung, Si Thu, et al.
Publicado: (2022) -
Classification of EEG Signals Using Neural Network for Predicting Consumer Choices
por: Sheela sobana Rani, K., et al.
Publicado: (2022)