Cargando…
Improving Spatial Resolution of Multispectral Rock Outcrop Images Using RGB Data and Artificial Neural Networks
Spectral information provided by multispectral and hyperspectral sensors has a great impact on remote sensing studies, easing the identification of carbonate outcrops that contribute to a better understanding of petroleum reservoirs. Sensors aboard satellites like Landsat series, which have data fre...
Autores principales: | Marques Junior, Ademir, de Souza, Eniuce Menezes, Müller, Marianne, Brum, Diego, Zanotta, Daniel Capella, Horota, Rafael Kenji, Kupssinskü, Lucas Silveira, Veronez, Maurício Roberto, Gonzaga, Luiz, Cazarin, Caroline Lessio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349106/ https://www.ncbi.nlm.nih.gov/pubmed/32586025 http://dx.doi.org/10.3390/s20123559 |
Ejemplares similares
-
A Method for Chlorophyll-a and Suspended Solids Prediction through Remote Sensing and Machine Learning †
por: Silveira Kupssinskü, Lucas, et al.
Publicado: (2020) -
Spectral Pattern Classification in Lidar Data for Rock Identification in Outcrops
por: Campos Inocencio, Leonardo, et al.
Publicado: (2014) -
Fire association with respiratory disease and COVID-19 complications in the State of Pará, Brazil
por: Schroeder, Lucas, et al.
Publicado: (2021) -
Respiratory Diseases, Malaria and Leishmaniasis: Temporal and Spatial Association with Fire Occurrences from Knowledge Discovery and Data Mining
por: Schroeder, Lucas, et al.
Publicado: (2020) -
Sustainability and dynamics of outcrop-to-outcrop hydrothermal circulation
por: Winslow, Dustin M., et al.
Publicado: (2015)