Cargando…
Rank Pooling Approach for Wearable Sensor-Based ADLs Recognition
This paper addresses wearable-based recognition of Activities of Daily Living (ADLs) which are composed of several repetitive and concurrent short movements having temporal dependencies. It is improbable to directly use sensor data to recognize these long-term composite activities because two exampl...
Autores principales: | Nisar, Muhammad Adeel, Shirahama, Kimiaki, Li, Frédéric, Huang, Xinyu, Grzegorzek, Marcin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349219/ https://www.ncbi.nlm.nih.gov/pubmed/32575451 http://dx.doi.org/10.3390/s20123463 |
Ejemplares similares
-
A Hierarchical Multitask Learning Approach for the Recognition of Activities of Daily Living Using Data from Wearable Sensors
por: Nisar, Muhammad Adeel, et al.
Publicado: (2023) -
Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors
por: Li, Frédéric, et al.
Publicado: (2018) -
Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification
por: Li, Frédéric, et al.
Publicado: (2020) -
Sleep Stage Classification in Children Using Self-Attention and Gaussian Noise Data Augmentation
por: Huang, Xinyu, et al.
Publicado: (2023) -
SenseHunger: Machine Learning Approach to Hunger Detection Using Wearable Sensors
por: Irshad, Muhammad Tausif, et al.
Publicado: (2022)