Cargando…
Pathophysiological Mechanisms of Cognitive Impairment and Neurodegeneration by Toxoplasma gondii Infection
Toxoplasma gondii is an obligate intracellular parasite considered one of the most successful pathogens in the world, owing to its ability to produce long-lasting infections and to persist in the central nervous system (CNS) in most warm-blooded animals, including humans. This parasite has a prefere...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349234/ https://www.ncbi.nlm.nih.gov/pubmed/32545619 http://dx.doi.org/10.3390/brainsci10060369 |
_version_ | 1783557015536140288 |
---|---|
author | Ortiz-Guerrero, Gloria Gonzalez-Reyes, Rodrigo E. de-la-Torre, Alejandra Medina-Rincón, German Nava-Mesa, Mauricio O. |
author_facet | Ortiz-Guerrero, Gloria Gonzalez-Reyes, Rodrigo E. de-la-Torre, Alejandra Medina-Rincón, German Nava-Mesa, Mauricio O. |
author_sort | Ortiz-Guerrero, Gloria |
collection | PubMed |
description | Toxoplasma gondii is an obligate intracellular parasite considered one of the most successful pathogens in the world, owing to its ability to produce long-lasting infections and to persist in the central nervous system (CNS) in most warm-blooded animals, including humans. This parasite has a preference to invade neurons and affect the functioning of glial cells. This could lead to neurological and behavioral changes associated with cognitive impairment. Although several studies in humans and animal models have reported controversial results about the relationship between toxoplasmosis and the onset of dementia as a causal factor, two recent meta-analyses have shown a relative association with Alzheimer’s disease (AD). AD is characterized by amyloid-β (Aβ) peptide accumulation, neurofibrillary tangles, and neuroinflammation. Different authors have found that toxoplasmosis may affect Aβ production in brain areas linked with memory functioning, and can induce a central immune response and neurotransmitter imbalance, which in turn, affect the nervous system microenvironment. In contrast, other studies have revealed a reduction of Aβ plaques and hyperphosphorylated tau protein formation in animal models, which might cause some protective effects. The aim of this article is to summarize and review the newest data in regard to different pathophysiological mechanisms of cerebral toxoplasmosis and their relationship with the development of AD and cognitive impairment. All these associations should be investigated further through clinical and experimental studies. |
format | Online Article Text |
id | pubmed-7349234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73492342020-07-22 Pathophysiological Mechanisms of Cognitive Impairment and Neurodegeneration by Toxoplasma gondii Infection Ortiz-Guerrero, Gloria Gonzalez-Reyes, Rodrigo E. de-la-Torre, Alejandra Medina-Rincón, German Nava-Mesa, Mauricio O. Brain Sci Review Toxoplasma gondii is an obligate intracellular parasite considered one of the most successful pathogens in the world, owing to its ability to produce long-lasting infections and to persist in the central nervous system (CNS) in most warm-blooded animals, including humans. This parasite has a preference to invade neurons and affect the functioning of glial cells. This could lead to neurological and behavioral changes associated with cognitive impairment. Although several studies in humans and animal models have reported controversial results about the relationship between toxoplasmosis and the onset of dementia as a causal factor, two recent meta-analyses have shown a relative association with Alzheimer’s disease (AD). AD is characterized by amyloid-β (Aβ) peptide accumulation, neurofibrillary tangles, and neuroinflammation. Different authors have found that toxoplasmosis may affect Aβ production in brain areas linked with memory functioning, and can induce a central immune response and neurotransmitter imbalance, which in turn, affect the nervous system microenvironment. In contrast, other studies have revealed a reduction of Aβ plaques and hyperphosphorylated tau protein formation in animal models, which might cause some protective effects. The aim of this article is to summarize and review the newest data in regard to different pathophysiological mechanisms of cerebral toxoplasmosis and their relationship with the development of AD and cognitive impairment. All these associations should be investigated further through clinical and experimental studies. MDPI 2020-06-12 /pmc/articles/PMC7349234/ /pubmed/32545619 http://dx.doi.org/10.3390/brainsci10060369 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Ortiz-Guerrero, Gloria Gonzalez-Reyes, Rodrigo E. de-la-Torre, Alejandra Medina-Rincón, German Nava-Mesa, Mauricio O. Pathophysiological Mechanisms of Cognitive Impairment and Neurodegeneration by Toxoplasma gondii Infection |
title | Pathophysiological Mechanisms of Cognitive Impairment and Neurodegeneration by Toxoplasma gondii Infection |
title_full | Pathophysiological Mechanisms of Cognitive Impairment and Neurodegeneration by Toxoplasma gondii Infection |
title_fullStr | Pathophysiological Mechanisms of Cognitive Impairment and Neurodegeneration by Toxoplasma gondii Infection |
title_full_unstemmed | Pathophysiological Mechanisms of Cognitive Impairment and Neurodegeneration by Toxoplasma gondii Infection |
title_short | Pathophysiological Mechanisms of Cognitive Impairment and Neurodegeneration by Toxoplasma gondii Infection |
title_sort | pathophysiological mechanisms of cognitive impairment and neurodegeneration by toxoplasma gondii infection |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349234/ https://www.ncbi.nlm.nih.gov/pubmed/32545619 http://dx.doi.org/10.3390/brainsci10060369 |
work_keys_str_mv | AT ortizguerrerogloria pathophysiologicalmechanismsofcognitiveimpairmentandneurodegenerationbytoxoplasmagondiiinfection AT gonzalezreyesrodrigoe pathophysiologicalmechanismsofcognitiveimpairmentandneurodegenerationbytoxoplasmagondiiinfection AT delatorrealejandra pathophysiologicalmechanismsofcognitiveimpairmentandneurodegenerationbytoxoplasmagondiiinfection AT medinarincongerman pathophysiologicalmechanismsofcognitiveimpairmentandneurodegenerationbytoxoplasmagondiiinfection AT navamesamauricioo pathophysiologicalmechanismsofcognitiveimpairmentandneurodegenerationbytoxoplasmagondiiinfection |