Cargando…
Extensive Evaluation of Morphological Statistical Harmonization for Brain Age Prediction
Characterizing both neurodevelopmental and aging brain structural trajectories is important for understanding normal biological processes and atypical patterns that are related to pathological phenomena. Initiatives to share open access morphological data contributed significantly to the advance in...
Autores principales: | Lombardi, Angela, Amoroso, Nicola, Diacono, Domenico, Monaco, Alfonso, Tangaro, Sabina, Bellotti, Roberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349402/ https://www.ncbi.nlm.nih.gov/pubmed/32545374 http://dx.doi.org/10.3390/brainsci10060364 |
Ejemplares similares
-
Explainable Deep Learning for Personalized Age Prediction With Brain Morphology
por: Lombardi, Angela, et al.
Publicado: (2021) -
Brain Age Prediction With Morphological Features Using Deep Neural Networks: Results From Predictive Analytic Competition 2019
por: Lombardi, Angela, et al.
Publicado: (2021) -
Communicability Characterization of Structural DWI Subcortical Networks in Alzheimer’s Disease
por: Lella, Eufemia, et al.
Publicado: (2019) -
Deep Learning and Multiplex Networks for Accurate Modeling of Brain Age
por: Amoroso, Nicola, et al.
Publicado: (2019) -
Association between Structural Connectivity and Generalized Cognitive Spectrum in Alzheimer’s Disease
por: Lombardi, Angela, et al.
Publicado: (2020)