Cargando…
FWNet: Semantic Segmentation for Full-Waveform LiDAR Data Using Deep Learning
In the computer vision field, many 3D deep learning models that directly manage 3D point clouds (proposed after PointNet) have been published. Moreover, deep learning-based-techniques have demonstrated state-of-the-art performance for supervised learning tasks on 3D point cloud data, such as classif...
Autores principales: | Shinohara, Takayuki, Xiu, Haoyi, Matsuoka, Masashi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349408/ https://www.ncbi.nlm.nih.gov/pubmed/32599774 http://dx.doi.org/10.3390/s20123568 |
Ejemplares similares
-
Calibration of the Pulse Signal Decay Effect of Full-Waveform Hyperspectral LiDAR
por: Zhang, Changsai, et al.
Publicado: (2019) -
Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision
por: Li, Xiaolu, et al.
Publicado: (2018) -
Full-Waveform LiDAR Point Clouds Classification Based on Wavelet Support Vector Machine and Ensemble Learning
por: Lai, Xudong, et al.
Publicado: (2019) -
A Depth-Adaptive Waveform Decomposition Method for Airborne LiDAR Bathymetry
por: Xing, Shuai, et al.
Publicado: (2019) -
LiDAR Intensity Completion: Fully Exploiting the Message from LiDAR Sensors
por: Dai, Weichen, et al.
Publicado: (2022)