Cargando…
Wearable Monitoring and Interpretable Machine Learning Can Objectively Track Progression in Patients during Cardiac Rehabilitation
Cardiovascular diseases (CVD) are often characterized by their multifactorial complexity. This makes remote monitoring and ambulatory cardiac rehabilitation (CR) therapy challenging. Current wearable multimodal devices enable remote monitoring. Machine learning (ML) and artificial intelligence (AI)...
Autores principales: | De Cannière, Hélène, Corradi, Federico, Smeets, Christophe J. P., Schoutteten, Melanie, Varon, Carolina, Van Hoof, Chris, Van Huffel, Sabine, Groenendaal, Willemijn, Vandervoort, Pieter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349532/ https://www.ncbi.nlm.nih.gov/pubmed/32604829 http://dx.doi.org/10.3390/s20123601 |
Ejemplares similares
-
Using Biosensors and Digital Biomarkers to Assess Response to Cardiac Rehabilitation: Observational Study
por: De Cannière, Hélène, et al.
Publicado: (2020) -
Short-Term Exercise Progression of Cardiovascular Patients throughout Cardiac Rehabilitation: An Observational Study
por: De Cannière, Hélène, et al.
Publicado: (2020) -
Towards personalized fluid monitoring in haemodialysis patients: thoracic bioimpedance signal shows strong correlation with fluid changes, a cohort study
por: Schoutteten, Melanie K., et al.
Publicado: (2020) -
The Added Value of In-Hospital Tracking of the Efficacy of Decongestion Therapy and Prognostic Value of a Wearable Thoracic Impedance Sensor in Acutely Decompensated Heart Failure With Volume Overload: Prospective Cohort Study
por: Smeets, Christophe J P, et al.
Publicado: (2020) -
Artefact Detection in Impedance Pneumography Signals: A Machine Learning Approach
por: Moeyersons, Jonathan, et al.
Publicado: (2021)