Cargando…

Sortation Control Using Multi-Agent Deep Reinforcement Learning in N-Grid Sortation System

Intralogistics is a technology that optimizes, integrates, automates, and manages the logistics flow of goods within a logistics transportation and sortation center. As the demand for parcel transportation increases, many sortation systems have been developed. In general, the goal of sortation syste...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Ju-Bong, Choi, Ho-Bin, Hwang, Gyu-Young, Kim, Kwihoon, Hong, Yong-Geun, Han, Youn-Hee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349561/
https://www.ncbi.nlm.nih.gov/pubmed/32560217
http://dx.doi.org/10.3390/s20123401
Descripción
Sumario:Intralogistics is a technology that optimizes, integrates, automates, and manages the logistics flow of goods within a logistics transportation and sortation center. As the demand for parcel transportation increases, many sortation systems have been developed. In general, the goal of sortation systems is to route (or sort) parcels correctly and quickly. We design an n-grid sortation system that can be flexibly deployed and used at intralogistics warehouse and develop a collaborative multi-agent reinforcement learning (RL) algorithm to control the behavior of emitters or sorters in the system. We present two types of RL agents, emission agents and routing agents, and they are trained to achieve the given sortation goals together. For the verification of the proposed system and algorithm, we implement them in a full-fledged cyber-physical system simulator and describe the RL agents’ learning performance. From the learning results, we present that the well-trained collaborative RL agents can optimize their performance effectively. In particular, the routing agents finally learn to route the parcels through their optimal paths, while the emission agents finally learn to balance the inflow and outflow of parcels.