Cargando…
C(2)DAN: An Improved Deep Adaptation Network with Domain Confusion and Classifier Adaptation
Deep neural networks have been successfully applied in domain adaptation which uses the labeled data of source domain to supplement useful information for target domain. Deep Adaptation Network (DAN) is one of these efficient frameworks, it utilizes Multi-Kernel Maximum Mean Discrepancy (MK-MMD) to...
Autores principales: | Sun, Han, Chen, Xinyi, Wang, Ling, Liang, Dong, Liu, Ningzhong, Zhou, Huiyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349586/ https://www.ncbi.nlm.nih.gov/pubmed/32604859 http://dx.doi.org/10.3390/s20123606 |
Ejemplares similares
-
Lightweight Adaptation of Classifiers to Users and Contexts: Trends of the Emerging Domain
por: Vildjiounaite, Elena, et al.
Publicado: (2015) -
Iterative joint classifier and domain adaptation for visual transfer learning
por: Noori Saray, Shiva, et al.
Publicado: (2021) -
Adaptive neural network classifier for decoding MEG signals
por: Zubarev, Ivan, et al.
Publicado: (2019) -
A Domain Adaptation Sparse Representation Classifier for Cross-Domain Electroencephalogram-Based Emotion Classification
por: Ni, Tongguang, et al.
Publicado: (2021) -
Cross-Domain Open Set Fault Diagnosis Based on Weighted Domain Adaptation with Double Classifiers
por: Wang, Huaqing, et al.
Publicado: (2023)