Cargando…
Efficient Processing of Geospatial mHealth Data Using a Scalable Crowdsensing Platform †
Smart sensors and smartphones are becoming increasingly prevalent. Both can be used to gather environmental data (e.g., noise). Importantly, these devices can be connected to each other as well as to the Internet to collect large amounts of sensor data, which leads to many new opportunities. In part...
Autores principales: | Kraft, Robin, Birk, Ferdinand, Reichert, Manfred, Deshpande, Aniruddha, Schlee, Winfried, Langguth, Berthold, Baumeister, Harald, Probst, Thomas, Spiliopoulou, Myra, Pryss, Rüdiger |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349608/ https://www.ncbi.nlm.nih.gov/pubmed/32570953 http://dx.doi.org/10.3390/s20123456 |
Ejemplares similares
-
Combining Mobile Crowdsensing and Ecological Momentary Assessments in the Healthcare Domain
por: Kraft, Robin, et al.
Publicado: (2020) -
Applying Machine Learning to Daily-Life Data From the TrackYourTinnitus Mobile Health Crowdsensing Platform to Predict the Mobile Operating System Used With High Accuracy: Longitudinal Observational Study
por: Pryss, Rüdiger, et al.
Publicado: (2020) -
Editorial: Smart Mobile Data Collection in the Context of Neuroscience
por: Pryss, Rüdiger, et al.
Publicado: (2021) -
Editorial: Smart mobile data collection in the context of neuroscience, volume II
por: Pryss, Rüdiger, et al.
Publicado: (2023) -
Exploring the Time Trend of Stress Levels While Using the Crowdsensing Mobile Health Platform, TrackYourStress, and the Influence of Perceived Stress Reactivity: Ecological Momentary Assessment Pilot Study
por: Pryss, Rüdiger, et al.
Publicado: (2019)