Cargando…

Signature of Large-Gap Quantum Spin Hall State in the Layered Mineral Jacutingaite

[Image: see text] Quantum spin Hall (QSH) insulators host edge states, where the helical locking of spin and momentum suppresses backscattering of charge carriers, promising applications from low-power electronics to quantum computing. A major challenge for applications is the identification of larg...

Descripción completa

Detalles Bibliográficos
Autores principales: Kandrai, Konrád, Vancsó, Péter, Kukucska, Gergő, Koltai, János, Baranka, György, Ákos Hoffmann, Áron Pekker, Kamarás, Katalin, Horváth, Zsolt E., Vymazalová, Anna, Tapasztó, Levente, Nemes-Incze, Péter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349644/
https://www.ncbi.nlm.nih.gov/pubmed/32551708
http://dx.doi.org/10.1021/acs.nanolett.0c01499
Descripción
Sumario:[Image: see text] Quantum spin Hall (QSH) insulators host edge states, where the helical locking of spin and momentum suppresses backscattering of charge carriers, promising applications from low-power electronics to quantum computing. A major challenge for applications is the identification of large gap QSH materials, which would enable room temperature dissipationless transport in their edge states. Here we show that the layered mineral jacutingaite (Pt(2)HgSe(3)) is a candidate QSH material, realizing the long sought-after Kane–Mele insulator. Using scanning tunneling microscopy, we measure a band gap in excess of 100 meV and identify the hallmark edge states. By calculating the [Image: see text] invariant, we confirm the topological nature of the gap. Jacutingaite is stable in air, and we demonstrate exfoliation down to at least two layers and show that it can be integrated into heterostructures with other two-dimensional materials. This adds a topological insulator to the 2D quantum material library.