Cargando…
Prognosis of Bearing and Gear Wears Using Convolutional Neural Network with Hybrid Loss Function
This study aimed to propose a prognostic method based on a one-dimensional convolutional neural network (1-D CNN) with clustering loss by classification training. The 1-D CNN was trained by collecting the vibration signals of normal and malfunction data in hybrid loss function (i.e., classification...
Autores principales: | Lo, Chang-Cheng, Lee, Ching-Hung, Huang, Wen-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349655/ https://www.ncbi.nlm.nih.gov/pubmed/32580465 http://dx.doi.org/10.3390/s20123539 |
Ejemplares similares
-
Supervised Health Stage Prediction Using Convolutional Neural Networks for Bearing Wear
por: Suh, Sungho, et al.
Publicado: (2020) -
Hybrid Loss-Constrained Lightweight Convolutional Neural Networks for Cervical Cell Classification
por: Chen, Wen, et al.
Publicado: (2022) -
An Intelligent Gear Fault Diagnosis Methodology Using a Complex Wavelet Enhanced Convolutional Neural Network
por: Sun, Weifang, et al.
Publicado: (2017) -
Experimental Investigation of the Wear Behaviour of Coated Polymer Gears
por: Polanec, Brigita, et al.
Publicado: (2021) -
Application of Convolutional Neural Network in Motor Bearing Fault Diagnosis
por: Zhou, Shuiqin, et al.
Publicado: (2022)