Cargando…
Hybrid SVM-CNN Classification Technique for Human–Vehicle Targets in an Automotive LFMCW Radar †
Human–vehicle classification is an essential component to avoiding accidents in autonomous driving. The classification technique based on the automotive radar sensor has been paid more attention by related researchers, owing to its robustness to low-light conditions and severe weather. In the paper,...
Autores principales: | Wu, Qisong, Gao, Teng, Lai, Zhichao, Li, Dianze |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349674/ https://www.ncbi.nlm.nih.gov/pubmed/32575841 http://dx.doi.org/10.3390/s20123504 |
Ejemplares similares
-
Enhancement of small doppler frequencies detection for LFMCW radar
por: Ghanem, Sameh
Publicado: (2021) -
YOLO-Based Simultaneous Target Detection and Classification in Automotive FMCW Radar Systems
por: Kim, Woosuk, et al.
Publicado: (2020) -
The Degradation of Automotive Radar Sensor Signals Caused by Vehicle Vibrations and Other Nonlinear Movements
por: Hau, Florian, et al.
Publicado: (2020) -
A novel proposed CNN–SVM architecture for ECG scalograms classification
por: Ozaltin, Oznur, et al.
Publicado: (2022) -
Multi-Class Weed Recognition Using Hybrid CNN-SVM Classifier
por: Wu, Yanjuan, et al.
Publicado: (2023)