Cargando…
Development of Neutral pH-Responsive Microgels by Tuning Cross-Linking Conditions
Polymer microgels that respond in a range of neutral pH can be useful for the development of molecular imaging tools and drug-delivery carriers. Here, we describe a simple approach in developing microgels that undergo volume phase transitions and substantial nuclear magnetic resonance (NMR) relaxome...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349689/ https://www.ncbi.nlm.nih.gov/pubmed/32545867 http://dx.doi.org/10.3390/s20123367 |
Sumario: | Polymer microgels that respond in a range of neutral pH can be useful for the development of molecular imaging tools and drug-delivery carriers. Here, we describe a simple approach in developing microgels that undergo volume phase transitions and substantial nuclear magnetic resonance (NMR) relaxometric changes within a narrow pH range of 6.4 to 7.4. The pH-responsive microgels were synthesized using methacrylic acid and a series of ethylene glycol dimethacrylate cross-linkers with repeating units of ethylene glycol that range from one to four. NMR relaxometry demonstrated that the transverse relaxation time (T(2)) of a suspension containing microgels that were cross-linked with diethylene glycol dimethacrylate sharply decreases at the pH where volume phase transition occurs. The polymer microgels cross-linked with 40 and 45 mol% of diethylene glycol dimethacrylate caused about 50% T(2) reduction with decreasing pH from 6.8 to 6.4. These results demonstrated that responses of microgels to a range of neutral pH can be easily tuned by using appropriate cross-linkers with certain cross-linking degree. This approach can be useful in developing highly sensitive molecular sensors for magnetic resonance imaging (MRI) of tissue pH values. |
---|