Cargando…
GAS-GCN: Gated Action-Specific Graph Convolutional Networks for Skeleton-Based Action Recognition
Skeleton-based action recognition has achieved great advances with the development of graph convolutional networks (GCNs). Many existing GCNs-based models only use the fixed hand-crafted adjacency matrix to describe the connections between human body joints. This omits the important implicit connect...
Autores principales: | Chan, Wensong, Tian, Zhiqiang, Wu, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349730/ https://www.ncbi.nlm.nih.gov/pubmed/32575802 http://dx.doi.org/10.3390/s20123499 |
Ejemplares similares
-
TFC-GCN: Lightweight Temporal Feature Cross-Extraction Graph Convolutional Network for Skeleton-Based Action Recognition
por: Wang, Kaixuan, et al.
Publicado: (2023) -
Shallow Graph Convolutional Network for Skeleton-Based Action Recognition
por: Yang, Wenjie, et al.
Publicado: (2021) -
Adaptive Attention Memory Graph Convolutional Networks for Skeleton-Based Action Recognition
por: Liu, Di, et al.
Publicado: (2021) -
Fast Temporal Graph Convolutional Model for Skeleton-Based Action Recognition
por: Nan, Mihai, et al.
Publicado: (2022) -
Enhanced Spatial and Extended Temporal Graph Convolutional Network for Skeleton-Based Action Recognition
por: Li, Fanjia, et al.
Publicado: (2020)